Large combinatorial systems: structure and design  Page description

Help  Print 
Back »

 

Details of project

 
Identifier
104343
Type K
Principal investigator Füredi, Zoltán
Title in Hungarian Nagy kombinatorikus rendszerek szerkezete és felépítése
Title in English Large combinatorial systems: structure and design
Keywords in Hungarian kódok, hipergráfok, regularitás, klaszterező algoritmusok, Ramsey problémák, majdnem perfektség
Keywords in English codes, hypergraphs, regularity, clustering algorithms, Ramsey problems, near-perfect graphs
Discipline
Mathematics (Council of Physical Sciences)100 %
Ortelius classification: Combinatorial analysis
Panel Mathematics and Computing Science
Department or equivalent Alfréd Rényi Institute of Mathematics
Participants Gyárfás, András
Ruszinkó, Miklós
Sarkozy, Gabor
Simonyi, Gábor
Tóth, Ágnes
Starting date 2012-09-01
Closing date 2017-06-30
Funding (in million HUF) 20.188
FTE (full time equivalent) 12.13
state closed project
Summary in Hungarian
A kutatás összefoglalója, célkitűzései szakemberek számára
Itt írja le a kutatás fő célkitűzéseit a témában jártas szakember számára.

A pályázat a kódelmélet, a Ramsey elmélet, a perfekt gráfok és a blokkrendszerek elmélete legújabb irányaiban kezdeményez kutatásokat. Az aszimptotikus becslések és pontos eredmények mellett a nagy, véges struktúrák konkrét konstrukcióit és algoritmusait is keressük.

Mi a kutatás alapkérdése?
Ebben a részben írja le röviden, hogy mi a kutatás segítségével megválaszolni kívánt probléma, mi a kutatás kiinduló hipotézise, milyen kérdéseket válaszolnak meg a kísérletek.

A pályázat 10 fontos problémát emel ki nagy véges kombinatorikai struktárákról (gráfok, hipergráfok, kódok, blokkrendszerek) melyek a pályázók eddigi együttműködéséből nőttek ki és jól illeszkednek a témakör nemzetközi trendjeihez és amelyek a jelenlegi haladottabb módszerekkel konstruktivan megoldhatónak tünnek. A kérdések elméleti érdekessége mellett azok gyakorlati vonatkozásait is vizsgáljuk.

Mi a kutatás jelentősége?
Röviden írja le, milyen új perspektívát nyitnak az alapkutatásban az elért eredmények, milyen társadalmi hasznosíthatóságnak teremtik meg a tudományos alapját. Mutassa be, hogy a megpályázott kutatási területen lévő hazai és a nemzetközi versenytársaihoz képest melyek az egyediségei és erősségei a pályázatának!

Nagy véges rendszerek vizsgálatának jelentőségét a hatalmas adattömeget feldolgozó számitógépek korában aligha lehet túlbecsülni. A folyamatosan növekvő és változó kommunikácós hálózatok is nagyszámú új matematikai problémát vetnek fel. Ezek megoldása tehát a matematikai belső értéken kivül számitógépek és
hálózatok tervezésében is hasznosulhat.

A kutatás összefoglalója, célkitűzései laikusok számára
Ebben a fejezetben írja le a kutatás fő célkitűzéseit alapműveltséggel rendelkező laikusok számára. Ez az összefoglaló a döntéshozók, a média, illetve az érdeklődők tájékoztatása szempontjából különösen fontos az NKFI Hivatal számára.

Számitógépek, szoftverek és kommunikációs hálózatok tervezése nagyon sok új matematikai problémát vet fel. A pályázat nagyméretű optimális kódok és véges rendszerek konstrukcióját, nagy hálózatok struktúráját és algoritmusait vizsgálja.
Summary
Summary of the research and its aims for experts
Describe the major aims of the research for experts.

The proposal addresses challenging problems in most recent directions of several areas: coding theory, Ramsey theory, theory of perfect graphs, theory of block designs. Beside asymptotic and sharp results we investigate actual constructions and algorithms of large finite structures.

What is the major research question?
Describe here briefly the problem to be solved by the research, the starting hypothesis, and the questions addressed by the experiments.

The proposal focuses on 10 important problems of large finite combinatorial structures (graphs, hypergraphs, codes, block designs). These problems grew organically from the past cooperation of the applicants, fit to international trends, and seem solvable by recent advanced methods. Beside their theoretical interest we study the practical aspects of these problems as well.

What is the significance of the research?
Describe the new perspectives opened by the results achieved, including the scientific basics of potential societal applications. Please describe the unique strengths of your proposal in comparison to your domestic and international competitors in the given field.

The importance of investigating of large finite systems can be hardly overestimated in the era of computers processing huge amount of data. The ever growing and changing communication networks also induce a large number of challenging mathematical problems. Therefore the solution of of these problems, apart from their inherent theoretical value, may contribute to the design of computers and networks.

Summary and aims of the research for the public
Describe here the major aims of the research for an audience with average background information. This summary is especially important for NRDI Office in order to inform decision-makers, media, and others.

The design of computers, software and communication networks generate a huge number of new mathematical problems. The proposal aims to construct large optimal codes and designs and investigates the structure of large networks and algorithms.





 

Final report

 
Results in Hungarian
A számítógépek korában a véges matematikai kutatások jelentősége felbecsülhetetlen. Jelen pályázatban a Vezető Kutató és kollégái nagy véges rendszerekben kerestek szabályos részstruktúrákat. Ezeket Ramsey illetve Turán típusú kérdéseknek hívjuk. Ez hagyományosan a Magyarországi kutatások egyik legerősebb területe. Kiragadunk két eredményt. 1. Az Erdős-Simonovits stabilitás modern bizonyítása: Arról van szó hogy ha egy F-mentes gráf élszáma közel van a lehetséges maximumhoz, akkor a struktúrája is nagyon hasonlít a Turán gráfra. A [33]-as cikk Erdős klasszikus bizonyítasával indít aztán a Szemerédi regularitással fejeződik be. Ezt az eredményt Sergej Norin az utóbbi két év legszebb bizonyításának nevezte. 2. A klasszikus Erdős-Gallai tétel 1959-ből az n-pontú k-hosszú út nélküli gráfok maximális élszámára ad éles becslést. A [47]-es cikkben ennek egy stabilitás változatát adjuk. Ez az eredmény (amelynek bizonyítása meglehetősen nehéz) annyira meglepő és újszerű, hogy a cikket meghívták a Journal of Combinatorial Theory 50 éves ünnepi számába.
Results in English
The importance of research of large finite structures can be hardly overestimated in the age of computers. In this proposal the PI and his colleagues considered the problem of finding some regular substructures in graphs and hypergraphs. These questions are called Ramsey and Turan type problems. Traditionally it is one of the strongest areas of research in Hungary. Two of the results achieved: 1. A modern proof of the Erdos-Simonovits stability result. This theorem states that if the size of an F-free graph is close to the optimal then its structure is close to the Turan graph. The short manuscript [33] builds on the insight of Erdos and then applies Szemeredi's regularity. Sergey Norin called the PI's result 'the nicest proof he had read in the last two years'. 2. The classical Erdos-Gallai theorems from 1959 determine the maximum number of edges in n-vertex graphs not containing a k-vertex path. The PI (with coauthors A. Kostochka, and J. Verstraete) [47] proved a stability version. This was such an unexpected result (with a highly nontrivial proof) that it was invited into the 50th year anniversary volume of the Journal of Combinatorial Theory.
Full text https://www.otka-palyazat.hu/download.php?type=zarobeszamolo&projektid=104343
Decision
Yes





 

List of publications

 
Zoltán Füredi: A proof of the stability of extremal graphs, Simonovits' stability from Szemeredi's regularity, Journal of Combinatorial Theory, Ser.B 115 (2015), 66-71, 2015
Zoltán Füredi, Tao Jiang, Robert Seiver: Exact solution of the hypergraph Tur'an problem for $k$-uniform linear paths, Combinatorica 34 (2014), 299-322, 2014
Zoltan Furedi, Tao Jiang: Hypergraph Turan numbers of linear cycles, Journal of Combinatorial Theory, Ser. A 123 (2014), 252-270, 2014
Zoltán Füredi, and Tao Jiang: Turan numbers of hypergraph trees, Journal of Combinatorial Theory, Ser.A, ACCEPTED, Also see: arXiv:1505.03210, 2015
Zoltán Füredi, A. Kostochka, and J. Verstraete: Stability in the Erdos-Gallai Theorem on cycles and paths, Journal of Combinatorial Theory, Ser. B 121 (2016), 197–228, 2016
Zoltán Füredi, and Z. Maleki: The minimum number of triangular edges and a symmetrization for multiple graphs, Combinatorics, Computing and Probabality 26 (2017), no. 4, 525–535, 2017
András Gyárfás, Gábor N. Sárközy: Induced colorful trees and paths in large chromatic graphs, The Electronic J. of Combinatorics 23 (2016) P4.46, 2016
Dömötör Pálvölgyi, András Gyárfás: Domination in transitive colorings of tournaments, Journal of Combinatorial Theory B, 107, (2014) 1-11, 2014
S. Fujita, M. Furuya, András Gyárfás, Á. Tóth: A note on covering edge colored hypergraphs by monochromatic components, Electronic J. of Combinatorics 21(2) (2014) P2.33, 2014
András Gyárfás: Vertex covers by monochromatic pieces - A survey of results and problems, Discrete Mathematics, 339 (2016), no. 7, 1970–1977, 2016
G. Simonyi, Á. Tóth: Dilworth rate: a generalization of Witsenhausen's zero-error rate for directed graphs, IEEE Trans. Inform. Theory 61 (2015), no. 2, 715–726., 2015
Zita Helle, Gábor Simonyi: Orientations making k-cycles cyclic., Graphs Combin. 32 (2016), no. 6, 2415–2423., 2016
András Gyárfás, Alexander W. N. Riasanovsky, Melissa U. Sherman-Bennett: Chromatic Ramsey number of acyclic hypergraphs, arxiv.org:1509.00551, 10 pp., 2015
András Gyárfás, Gábor N. Sárközy: Cliques in C_4-free graphs of large minimum degree, Period. Math. Hungar. 74 (2017), no. 1, 73–78, 2017
András Gyárfás, Zoltán Király: Covering complete partite hypergraphs by monochromatic components, Discrete Math. 340 (2017), no. 12, 2753–2761, 2017
S. Fujita, M. Furuya, Á. Tóth: A note on covering edge colored hypergraphs by monochromatic components, Electronic J. of Combinatorics 21(2) (2014) P2.33, 2014
András Gyárfás, Gábor N. Sárközy: Monochromatic loose cycle partitions in hypergraphs, Electronic J. of Comb. 21(2) 2014, P2.36, 2014
András Gyárfás, Gábor N. Sárközy: Ramsey number of a connected triangle matching, Journal of Graph Theory, 2013, 2013
András Gyárfás, A. Bialostocki: Replacing the host K_n by n-chromatic graphs in Ramsey-type results, Journal of Graph Theory, 2014, 2014
Gábor N. Sárközy: Improved monochromatic loose cycle partitions in hypergraphs, Discrete Mathematics 334, pp. 52–62., 2014
G. Simonyi, Á. Tóth: A generalization of Witsenhausen's zero-error rate for directed graphs, arXiv:1406.0767, 2014
Zoltan Furedi, M. Ruszinkó: Uniform hypergraphs containing no grids, Advances in Mathematics, 240 (2013), 302-324, 2013
P. Balister, M. Ruszinkó: Angular depth of random point sets, in PREPARATION, 2014
Y. Nagy, Cs. Nemes, A. Hiba, Á. Csik, Á. Kiss, M. Ruszinkó, P. Szolgay,: Accelerating unstructured finite volume computations on field-programmable gate arrays, Concurrency and Computation: Practice and Experience, 26:(3) pp. 615-643. (2014), 2014
Zoltán Füredi: Linear trees in uniform hypergraphs, European J. Combin. 35 (2014), 264-272, 2014
Zoltán Füredi, Tao Jiang, Robert Seiver: Exact solution of the hypergraph Tur'an problem for $k$-uniform linear paths, Combinatorica 34 (2014), 299-322. Also see: arXiv:1108.1247, 20 pp., 2014
Bela Bollobas, Zoltán Füredi, Ida Kantor, G. O. H. Katona, Imre Leader: A coding problem for pairs of subsets, to APPEAR, 2014
Zoltán Füredi, David S. Gunderson: Extremal numbers for odd cycles, Combinatorics, Probability and Computing, to APPEAR Also see: arXiv:1310.6766, 6 pp., 2014
András Gyárfás, Gábor N. Sárközy: Rainbow matchings and partial transversals of Latin squares, Discrete Mathematics 327, pp. 96–102, 2014
Janos Barat, András Gyárfás, Gábor N. Sárközy: Rainbow matchings in bipartite multigraphs, Electronic Journal of Combinatorics, ACCEPTED, 2014
Zoltán Füredi: On a theorem of Erdős and Simonovits on graphs not containing the cube, Bolyai Math. Studies 25, pp. 113-125, Erd\H os Centennial, de Gruyter, Berlin, 2014. arXiv:1307.1062, 2014
Gábor Simonyi, Gábor Tardos, Ambrus Zsbán: Relations between the local chromatic number and its directed version, J. Graph Theory, 79, 318-330. arXiv:1305.7473, 2015
Zoltán Füredi, Dániel Gerbner, Máté Vizer: A discrete isodiametric result: the Erdos-Ko-Rado theorem for multisets, European J. Combin. 48 (2015), 224--233. arXiv:1212.1071, 2015
Paul Balister, Béla Bollobás, Zoltán Füredi, John Thompson: Minimal symmetric differences of lines in projective planes, Journal of Combinatorial Designs, 22 (2014), 435-451. arXiv:1303.4117, 2014
Zoltán Füredi, Miklós Simonovits: The history of degenerate (bipartite) extremal graph problems, Bolyai Math. Studies 25, Springer 2013, pp. 169--264, arXiv:1306.5167, 2013
Y. Nagy, Cs. Nemes, A. Hiba, Á. Csik, Á. Kiss, M. Ruszinkó, P. Szolgay: Accelerating unstructured finite volume computations on field-programmable gate arrays, Concurrency and Computation: Practice and Experience, 26:(3) pp. 615-643. (2014), 2014
Bela Bollobas, Zoltán Füredi, Ida Kantor, G. O. H. Katona, Imre Leader: A coding problem for pairs of subsets, in: Geometry, Structure and Randomness in Combinatorics pp, 47--59. CRM Series, 18, Ed. Norm., Pisa, 2015. arXiv: 1403.3847, 2015
Zoltán Füredi, David S. Gunderson: Extremal numbers for odd cycles, Combinatorics, Computing and Probabality 24 (2015), 641-645. Also see: arXiv:1310.6766, 6 pp., 2015
Janos Barat, András Gyárfás, Gábor N. Sárközy: Rainbow matchings in bipartite multigraphs, Discrete Mathematics ACCEPTED, arxiv: 1505.0101779, 2015
Paul Balister, Béla Bollobás, Zoltán Füredi, I. Leader, M. Walters: Subtended angles, Israel Journal of Mathematics TO APPEAR Also see: arXiv:1502.07869,, 2015
Zoltán Füredi: A proof of the stability of extremal graphs, Simonovits' stability from Szemeredi's regularity, Journal of Combinatorial Theory, Ser.B 115 (2015), 66-71. Also see: arXiv:1501.03129, 2015
Zoltán Füredi and I. Kantor: List colorings with distinct list sizes, the case of complete bipartite graphs, J. Graph Theory, TO APPEAR, 2015
Zoltán Füredi, L. Ozkahya: On 3-uniform hypergraphs without a cycle of a given length, Discrete Applied Mathematics TO APPEAR, Also see: arXiv:1412.8083, 2015
Zoltán Füredi, and Z. Maleki: The minimum number of triangular edges and a symmetrization for multiple graphs, Combinatorics, Computing and Probabality TO APPEAR, Also see: arXiv:1411.0771, 2015
Zoltán Füredi, and Tao Jiang: Turan numbers of hypergraph trees, Journal of Combinatorial Theory, Ser.A, TO APPEAR, Also see: arXiv:1505.03210, 2015
Zoltán Füredi, A. Kostochka, and J. Verstraete: Stability in the Erdos-Gallai Theorem on cycles and paths, Journal of Combinatorial Theory, Ser.A, TO APPEAR, Also see: arXiv:1507.05338, 2015
András Gyárfás and J Lehel: Red-blue clique partitions and (1-1)-transversals, Electronic Journal of Combinatorics, arxiv: 1509.03408, 2015
András Gyárfás, J. Lehel, and Gábor N. Sárközy: Ramsey number of paths and connected matchings in Ore-type host graphs, Journal of Graph Theory, SUBMITTED, 2015
András Gyárfás, E. Gyori, and M. Simonovits: On 3-uniform hypergraphs without linear cycles, Journal of Combinatorics, ACCEPTED, arxiv: 1412.7205, 2015
J. Balogh, Janos Barat, D. Gerbner, András Gyárfás, Gábor N. Sárközy: Partitioning 2-edge colored graphs by monochromatic paths and cycles, Combinatorica 34, (2014) 507-526, 2014
A. Gyarfas: Large Cross-free sets in Steiner triple systems, Journal of Combinatorial Designs, 2015
András Gyárfás: Vertex covers by monochromatic pieces - A survey of results and problems, Discrete Mathematics, TO APPEAR,, 2015
S. Janson, R. Kozma, M. Ruszinko, Y. Sokololov: Percolation on a power-law-like random graph coupled with a lattice. Part I: Case of single type vertices, SUBMITTED, 2015
R. Kozma, M. Ruszinko, Y. Sokololov: Percolation on a power-law-like random graph coupled with a lattice. Part II: The case of two types of nodes, SUBMITTED, 2015
A. Hiba, M. Ruszinko: Variable Subset Merger Metaheuristic for Applicable Partial Solution Generation, Operations Research Letters, submitted, 2015
G. Simonyi, Á. Tóth: Dilworth rate: a generalization of Witsenhausen's zero-error rate for directed graphs, IEEE Trans. Inform. Theory, Vol. 61, No. 2, 1-12, 2015
András Gyárfás: Problems and memories, arXiv:1307.1768, 13 pp., 2013
Maria Axenovich, Andras Gyarfas, Hong Liu, Dhruv Mubayi: Multicolor Ramsey numbers for triple systems, Discrete Math. 322 (2014) 69-77., 2014
Dömötör Pálvölgyi, András Gyárfás: Domination in transitive colorings of tournaments, Journal of Combinatorial Theory B, 107, (2014) 1-11., 2014
S. Fujita, M. Furuya, András Gyárfás, Á. Tóth: A note on covering edge colored hypergraphs by monochromatic components, Electronic J. of Combinatorics 21(2) (2014) P2.33, 2014
András Gyárfás, Gábor N. Sárközy: Ramsey number of a connected triangle matching, Journal of Graph Theory, 83 (2016), no. 2, 109–119. arxiv.org:1509.05530, 14 pp., 2016
András Gyárfás, A. Bialostocki: Replacing the host K_n by n-chromatic graphs in Ramsey-type results, arxiv.org:1506.04495, 7 pp., 2015
Janos Barat, András Gyárfás, Gábor N. Sárközy: Rainbow matchings in bipartite multigraphs, Periodica Math. Hungar. 74 (2017), no. 1, 108–111., 2017
András Gyárfás and J Lehel: Red-blue clique partitions and (1-1)-transversals, Electronic Journal of Combinatorics, 23 (2016), no. 3, Paper 3.40, 5 pp., 2016
János Barát, András Gyárfás, J. Lehel, and Gábor N. Sárközy: Ramsey number of paths and connected matchings in Ore-type host graphs, Discrete Math. 339 (2016), no. 6, 1690–1698., 2016
András Gyárfás, E. Gyori, and M. Simonovits: On 3-uniform hypergraphs without linear cycles, Journal of Combinatorics, 7 (2016), no. 1, 205–216., 2016
J. Balogh, Janos Barat, D. Gerbner, András Gyárfás, Gábor N. Sárközy: Partitioning 2-edge colored graphs by monochromatic paths and cycles, Combinatorica 34, (2014) 507-526, arxiv.org:1509.05544, 20 pp., 2014
A. Gyarfas: Large Cross-free sets in Steiner triple systems, Journal of Combinatorial Designs, 23 (2015), no. 8, 321–327., 2015
András Gyárfás: Vertex covers by monochromatic pieces - A survey of results and problems, Discrete Mathematics, 339 (2016), no. 7, 1970–1977. arxiv.org:1509.05539, 17 pp., 2016
András Gyárfás: Problems and memories, arXiv:1307.1768, pp. 13, 2013
Maria Axenovich, Andras Gyarfas, Hong Liu, Dhruv Mubayi: Multicolor Ramsey numbers for triple systems, Discrete Math. 322 (2014) 69-77, 2014
Zoltán Füredi, Dániel Gerbner, Máté Vizer: A discrete isodiametric result: the Erdos-Ko-Rado theorem for multisets, European J. Combin. 48 (2015), 224--233, 2015
Zoltan Furedi, Alexandr Kostochka, Mohit Kumbhat: Choosability with separation of complete graphs and minimal abundant packings, Journal of Graph Theory, 76 (2014), 129-137, 2014
András Gyárfás, Gábor N. Sárközy: Ramsey number of a connected triangle matching, Journal of Graph Theory, 83 (2016), no. 2, 109–119, 2016
András Gyárfás, A. Bialostocki: Replacing the host K_n by n-chromatic graphs in Ramsey-type results, arxiv.org:1506.04495, 7 pp., 2015
Zoltán Füredi, David S. Gunderson: Extremal numbers for odd cycles, Combinatorics, Computing and Probabality 24 (2015), 641-645, 2015
Janos Barat, András Gyárfás, Gábor N. Sárközy: Rainbow matchings in bipartite multigraphs, Periodica Math. Hungar. 74 (2017), no. 1, 108–111, 2017
Paul Balister, Béla Bollobás, Zoltán Füredi, I. Leader, M. Walters: Subtended angles, Israel Journal of Mathematics 214 (2016), no. 2, 995–1012, 2016
Zoltán Füredi and I. Kantor: List colorings with distinct list sizes, the case of complete bipartite graphs, J. Graph Theory, 82 (2016), no. 2, 218–227, 2016
Zoltán Füredi, L. Ozkahya: On 3-uniform hypergraphs without a cycle of a given length, Discrete Applied Mathematics 216 (2017), part 3, 582–588, 2015
András Gyárfás and J Lehel: Red-blue clique partitions and (1-1)-transversals, Electronic Journal of Combinatorics, 23 (2016), no. 3, Paper 3.40, 5 pp., 2016, 2016
János Barát, András Gyárfás, J. Lehel, and Gábor N. Sárközy: Ramsey number of paths and connected matchings in Ore-type host graphs, Discrete Math. 339 (2016), no. 6, 1690–1698, 2016
András Gyárfás, E. Gyori, and M. Simonovits: On 3-uniform hypergraphs without linear cycles, Journal of Combinatorics, 7 (2016), no. 1, 205–216, 2016
A. Gyarfas: Large Cross-free sets in Steiner triple systems, Journal of Combinatorial Designs, 23 (2015), no. 8, 321–327, 2015
András Gyárfás, Zoltán Király: Covering complete partite hypergraphs by monochromatic components, Discrete Math. 340 (2017), no. 12, 2753–2761., 2017
Andras Gyarfas, Gabor N. Sarkozy: Cliques in C_4-free graphs of large minimum degree, Period. Math. Hungar. 74 (2017), no. 1, 73–78., 2017
András Gyárfás, Alexander W. N. Riasanovsky, Melissa U. Sherman-Bennett: Chromatic Ramsey number of acyclic hypergraphs, arxiv.org:1509.00551, 10 pp., 2015
Andras Gyarfas, Gabor N. Sarkozy: Induced colorful trees and paths in large chromatic graphs, The Electronic J. of Combinatorics 23 (2016) P4.46, 2016
András Gyárfás, Gábor N. Sárközy, Stanley Selkow: Coverings by few monochromatic pieces - a transition between two Ramsey problems, arXiv:1304.0871, 2013
Lucas Colucci, András Gyárfás: Coloring 2-intersecting hypergraphs, arXiv:1307.6944, 2013
András Gyárfás: Problems and memories, arXiv:1307.1768, 2013
András Gyárfás, Zhentao Li, Raphael Machado, András Sebo, Stéphan Thomassé, Nicolas Trotignon: Complements of nearly perfect graphs, arXiv:1304.2862, 2013
Maria Axenovich, Andras Gyarfas, Hong Liu, Dhruv Mubayi: Multicolor Ramsey numbers for triple systems, arXiv:1302.5304, 2013
Dömötör Pálvölgyi, András Gyárfás: Domination in transitive colorings of tournaments, arXiv:1302.4677, 2013
G. Chen, S. Fujita, A. Gyarfas, J. Lehel, A. Toth: Around a biclique cover conjecture, arXiv:1212.6861, 2012
Zoltán Füredi: On a theorem of Erdős and Simonovits on graphs not containing the cube, arXiv:1307.1062, 2013
Gábor Simonyi, Gábor Tardos, Ambrus Zsbán: Relations between the local chromatic number and its directed version, arXiv:1305.7473, 2013
Zoltan Furedi, Tao Jiang: Hypergraph Turan numbers of linear cycles, arXiv:1302.2387, 2013
Zoltán Füredi, Dániel Gerbner, Máté Vizer: An analogue of the Erdős-Ko-Rado theorem for multisets, arXiv:1212.1071, 2013
Zoltan Furedi, Alexandr Kostochka, Mohit Kumbhat: Choosability with separation of complete graphs and minimal abundant packings, arXiv:1303.4030, 2013
Paul Balister, Béla Bollobás, Zoltán Füredi, John Thompson: Minimal symmetric differences of lines in projective planes, arXiv:1303.4117, 2013
Zoltán Füredi, Miklós Simonovits: The history of degenerate (bipartite) extremal graph problems, arXiv:1306.5167, 2013
András Gyárfás, Zhentao Li, Raphael Machado, András Sebo, Stéphan Thomassé, Nicolas Trotignon: Complements of nearly perfect graphs, Journal of Combinatorics, 4 (3) (2013)299-310, arXiv:1304.2862, 2013
Maria Axenovich, Andras Gyarfas, Hong Liu, Dhruv Mubayi: Multicolor Ramsey numbers for triple systems, Discrete Math. 322 (2014) 69-77. arXiv:1302.5304, 2013
Dömötör Pálvölgyi, András Gyárfás: Domination in transitive colorings of tournaments, Journal of Combinatorial Theory B, 107, (2014) 1-11, arXiv:1302.4677, 2013
Zoltán Füredi: On a theorem of Erdős and Simonovits on graphs not containing the cube, Bolyai Math. Studies 25, pp. 169-264, Erd\H os Centennial, Springer, 2013. arXiv:1307.1062, 2013
Gábor Simonyi, Gábor Tardos, Ambrus Zsbán: Relations between the local chromatic number and its directed version, J. Graph Theory, to appear, arXiv:1305.7473, 2013
Zoltan Furedi, Tao Jiang: Hypergraph Turan numbers of linear cycles, Journal of Combinatorial Theory, Ser. A 123 (2014), 252-270. arXiv:1302.2387, 2014
Zoltan Furedi, Alexandr Kostochka, Mohit Kumbhat: Choosability with separation of complete graphs and minimal abundant packings, Journal of Graph Theory, 76 (2014), 129-137. arXiv:1303.4030, 2014
Paul Balister, Béla Bollobás, Zoltán Füredi, John Thompson: Minimal symmetric differences of lines in projective planes, Journal of Combinatorial Designs, {22} (2014), 435-451. arXiv:1303.4117, 2014
Zoltán Füredi, Miklós Simonovits: The history of degenerate (bipartite) extremal graph problems, Bolyai Math. Studies 25 pp. 169--264, arXiv:1306.5167, 2013
András Gyárfás, Gábor N. Sárközy: Monochromatic path and cycle partitions in hypergraphs, Electronic J. of Combinatorics, 20 P18, 2013




Back »