|
Here you can view and search the projects funded by NKFI since 2004
Back »
|
|
List of publications |
|
|
K.J. Böröczky, M. Henk: Cone-volume measure of general centered convex bodies, Advances Math., 286 (2016), 703-721., 2016 | K.J. Böröczky, P. Hegedűs, G. Zhu: On the discrete logarithmic Minkowski problem, IMRN, Int. Math. Res. Not., 6 (2016), 1807-1838., 2016 | K.J. Böröczky: Translation invariant Minkowski valuations on lattice polytopes, In: F. Barthe, M. Henk, M. Ludwig (eds), Oberwolfach Report No. 56/2015, (2016), 3193-3195., 2016 | Á. Kurusa: Can you see the bubbles in a foam?, Acta Sci. Math. (Szeged), 82:3-4 (2016), 663-694., 2016 | F. Fodor, Á. Kurusa, V. Vígh: Inequalities for hyperconvex sets, Advances in Geometry, 16:3 (2016), 337-348, 2016 | J. Kozma, Á. Kurusa: Hyperbolic is the only Hilbert geometry having circumcenter or orthocenter generally, Beiträge zur Algebra und Geometrie, 57:1 (2016), 243-258., 2016 | F. Fodor, V. Vígh, and T. Zarnócz: Covering the sphere by equal zones, Acta. Math. Hungar. 149 (2016), no. 2, 478-489., 2016 | F. Fodor, V. Vígh, and T. Zarnócz: On the angle sum of lines, Arch. Math. (Basel) 106 (2016), no. 1, 91-100., 2016 | F. Fodor, D. Hug, I. Ziebarth: The volume of random polytopes circumscribed around a convex body, Mathematika 62 (2016), no. 1, 283-306., 2016 | G. Ambrus, I. Bárány, V. Grinberg: Small subset sums., Linear Algebra and its Applications 499, 66-78., 2016 | K.J. Boroczky, M. Henk: Cone-volume measure and stability, Advances in Mathematics, 306, 24-50., 2017 | G. Ambrus Gergely, I. Barany, K.J. Boroczky, Gabor Fejes Toth, Janos Pach (eds): New Trends in Intuitive Geometry, Springer, 2017 | K.J. Boroczky, Hai T. Trinh: The planar Lp-Minkowski problem for 0 < p < 1, Adv. Applied Mathematics, 87, 58-81., 2017 | K.J. Boroczky, M. Ludwig: Valuations on Lattice Polytopes, In: Tensor Valuations and their Applications in Stochastic Geometry and Imaging (M. Kiderlen and E. Vedel Jensen, eds.), Springer Lecture Notes in Math 2177, 213-, 2017 | K.J. Boroczky, D. Hug: Isotropic measures, and stronger forms of the reverse isoperimetric inequality, Transactions of AMS, 369, 6987-7019., 2017 | K.J. Boroczky, M. Henk, H. Pollehn: Subspace concentration of dual curvature measures of symmetric convex bodies, Journal of Differential Geometry, accepted., 2018 | K.J. Boroczky, M. Henk, H. Pollehn: Subspace concentration of dual curvature measures of symmetric convex bodies, Journal of Differential Geometry, 109, 411-429, 2018 | K. Boroczky, K.J. Boroczky, Alexey Glazyrin, Agnes Kovacs: Stability of the simplex bound for packings by equal spherical caps determined by simplicial regular polytopes, In: M.D.E. Conder, A. Deza, A.I. Weiss (eds): Discrete Geometry and Symmetry. Springer, 2018, 31-60., 2018 | K.J. Boroczky, F. Fodor, D. Hug: Strengthened volume inequalities for $L_p$ zonoids of even isotropic measures, Trans. AMS, 371, 505-548, 2019 | Ferenc Fodor, Viktor Vigh: Variance estimates for random disc-polygons in smooth convex discs, J. Appl. Probab., 55 no 4,, 2018 | Arpad Kurusa: Conics in Minkowski geometries, Aequationes Math. 92, no. 5, 949–961, 2018 | Arpad Kurusa: Straight projective-metric spaces with centres, J. Geom. 109, no. 1, Art. 22, 13 pp., 2018 | Böröczky, Károly J.; Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong; Zhao, Yiming: The dual Minkowski problem for symmetric convex bodies, Adv. Math. 356, 106805, 30 pp., 2019 | Bianchi, Gabriele; Böröczky, Károly J.; Colesanti, Andrea: The Orlicz version of the Lp Minkowski problem for −n<p<0, Adv. in Appl. Math. 111, 101937, 29 pp., 2019 | Abardia-Evéquoz, Judit; Böröczky, Károly J.; Domokos, Mátyás; Kertész, Dávid: SL(m,C)-equivariant and translation covariant continuous tensor valuations, J. Funct. Anal. 276, no. 11, 3325–3362., 2019 | Böröczky, Károly J.; Fodor, Ferenc: The Lp dual Minkowski problem for p>1 and q>0, J. Differential Equations, 266, no. 12, 7980–8033., 2019 | Böröczky, Károly J.; Ludwig, Monika: Minkowski valuations on lattice polytopes, J. Eur. Math. Soc. (JEMS) 21, no. 1, 163–197., 2019 | Bianchi, Gabriele; Böröczky, Károly J.; Colesanti, Andrea; Yang, Deane: The Lp-Minkowski problem for −n<p<1, Adv. Math. 341, 493–535., 2019 | Fodor, Ferenc; Naszódi, Márton; Zarnócz, Tamás: On the volume bound in the Dvoretzky-Rogers lemma, Pacific J. Math. 301, no. 1, 89–99, 2019 | Kurusa, Árpád: Ceva's and Menelaus' theorems in projective-metric spaces, J. Geom. 110, no. 2, Art. 39, 12 pp., 2019 | Kurusa, Árpád; Kozma, József: Euler's ratio-sum formula in projective-metric spaces, Beitr. Algebra Geom. 60, no. 2, 379–390, 2019 | Czédli, Gábor; Kurusa, Árpád: A convex combinatorial property of compact sets in the plane and its roots in lattice theory, Categ. Gen. Algebr. Struct. Appl. 11, no. 1, 57–92, 2019 |
|
|
|
|
|
|
Back »
|
|
|