|
Random graphs and correlated percolation models
|
Help
Print
|
Here you can view and search the projects funded by NKFI since 2004
Back »
|
|
Details of project |
|
|
Identifier |
121165 |
Type |
PD |
Principal investigator |
Ráth, Balázs |
Title in Hungarian |
Véleltlen gráfok és korrelált perkolációs modellek |
Title in English |
Random graphs and correlated percolation models |
Keywords in Hungarian |
önszerveződő kritikus viselkedés, perkoláció, véletlen bolyongás, kölcsönható részecskerendszer |
Keywords in English |
self-organized criticality, percolation, random walk, interacting particle system |
Discipline |
Mathematics (Council of Physical Sciences) | 100 % | Ortelius classification: Probability theory |
|
Panel |
Mathematics and Computing Science |
Department or equivalent |
Department of Stochastics (Budapest University of Technology and Economics) |
Starting date |
2016-10-01 |
Closing date |
2019-09-30 |
Funding (in million HUF) |
15.264 |
FTE (full time equivalent) |
2.10 |
state |
closed project |
Summary in Hungarian A kutatás összefoglalója, célkitűzései szakemberek számára Itt írja le a kutatás fő célkitűzéseit a témában jártas szakember számára. 1. Véletlen gráfok:
1.1: Az erdőtűz-modellt [Ráth, Tóth, 2009, EJP] és a fagyott perkolációs modellt [Ráth, 2009, JSP] vizsgálni: (i) bizonyítani, hogy az erdőtűz-modell gráfja inhomogén véletlen gráf, lásd [Bollobás, Janson, Riordan, RSA, 2007]. (ii) az összefüggő komponensek dinamikájára határeloszlás-tételt bizonyítani, a "multiplicative coalescent" [Aldous, 1997, AoP] módosításával. (iii) A fagyott perkolációs modell villámcsapási rátája és a leégett komponensek mérete közti összefüggésre képletet adni, lásd [Ráth, 2009, JSP], Conjecture 1.1.
1.2: a [Lalley, PTRF, 2009]-ben definiált egydimenziós "falu"-gráfmodellen értelmezett szuperkritikus SIR járványterjedést vizsgálni. (i) a SIR járvány metastabilis állapotát jellemezni. (ii) vizsgálni, hogy mi a legolcsóbb stratégia arra, hogy a metastabilis állapotból indítva stabilis (gyógyult) állapotba jussunk. (iii) Beazonosítani, hogy a falvak és a lakosok számának függvényében mely esetekben lesz fertőzés minden faluban.
2. Korrelált perkolációs modellek:
2.1: A [Sznitman, 2010]-ben definiált "random interlacement" modell I^u gráfjának geometriáját vizsgálni, ha u<<1, d>=5. (i) Belátni, hogy hogy az I^u gráf-metrikája forgásinvariánssá válik, amint u->0, lásd [Cerny, Popov, 2012] Remark 1.2. (ii) megtalálni, hogy milyen sebességgel konvergál az I^u gráf Bernoulli-perkolációs küszöb-értéke 1-hez, amint u->0, lásd [Ráth, Sapozhnikov, 2013, EJP].
2.2: a [Ráth, Valesin, 2016+, AoP] perkolációs modelljére (azaz a "voter model" stacionárius eloszlásaira) a [Popov, Teixeira, JEMS, 2015] eredményeihez hasonló dekorrelációs egyenlőtlenségeket belátni.
Mi a kutatás alapkérdése? Ebben a részben írja le röviden, hogy mi a kutatás segítségével megválaszolni kívánt probléma, mi a kutatás kiinduló hipotézise, milyen kérdéseket válaszolnak meg a kísérletek. 1. Véletlen gráfok:
1.1: Mi a erdőtűz-modell és a fagyott perkolációs modell önszerveződő kritikus viselkedésének pontos mechanizmusa? (i) Milyen inhomogén véletlen gráfot látunk az erdőtűz-modellre nézve egy adott pillanatban? (ii) Ugyanaz-e a skálalimesze az erdőtűz-modell és a fagyott perkolációs modell nagy komponenseinek? (iii) Mi az összefüggés a villámcsapási ráta és a leégett komponensek nagysága közt?
1.2: Mikor és milyen módon hal ki a szuperkritikus SIR járvány az egydimenziós "falu"-modellben? (i) Milyen alakú a metastabil állapot állóhulláma? (ii) Mi a legkevésbé költséges stratégia arra, hogy a járvány a metastabilis állapotból stabilis (gyógyult) állapotba jusson? (iii) A falvak és lakosok számának függvényében mikor terjed a fertőzés át minden falura?
2. Korrelált perkolációs modellek:
2.1: Milyen hatással van a "véletlen gubanc" (random interlacement) geometriájára az, ha a gubanc sűrűsége nullához tart? (i) Forgás-invariánssá válik-e a gubanc makroszkopikus belső geometriája, amint a gubanc sűrűsége nullához tart? (ii) A ritka gubanc milyen kicsi hányadát kell törölni ahhoz, hogy véges nagyságú darabokra essen szét?
2.2: Milyen hatással van a "voter model" stacionárius állapotában az azonos állapotú egyedek makroszkopikus mintázatára model korrelált jellege? Beletartozik-e a "voter model" is a korrelált perkolációs modellek azon osztályába, amelyekre olyan erős dekorrelációs egyenlőtlenségek igazak, mint pl. a "véletlen gubanc"-ra?
Mi a kutatás jelentősége? Röviden írja le, milyen új perspektívát nyitnak az alapkutatásban az elért eredmények, milyen társadalmi hasznosíthatóságnak teremtik meg a tudományos alapját. Mutassa be, hogy a megpályázott kutatási területen lévő hazai és a nemzetközi versenytársaihoz képest melyek az egyediségei és erősségei a pályázatának! A kutatásom kérdéseit valódi jelenségek ihlették, és a megoldási módszereim is gyakran statisztikus fizikai eredetűek. A célom ezen jelenségek kellően egyszerű modelljeinek matematikai precizitású vizsgálata.
A kutatási témáim és a jelenségek, amit modelleznek:
1.1 : erdőtűz-modell: önszerveződő kritikus viselkedés 1.2 : szuperkritikus SIR járvány-modellek: metastabilitás 2.1 : "véletlen gubanc" (random interlacements): inhomogén közegben terjedő folyadék által átnedvesített térrész geometriája (perkoláció) 2.2 : "voter model": egymással versengő fajok térbeli eloszlásának makroszkopikus mintázatait modellezi
A tervezett eredmények elméleti jelentősége, címszavakban:
1.1 : a modell-specifikus részletek mögött rejlő univerzális viselkedés körülírását adná 1.2 : annak a leírása lenne, hogy mi a legevésbé költséges stratégia arra, hogy a modellbeli járvány megszűnjön 2.1 : az átnedvesedett térrész forgás-invarianciája más perkolációs modellekben híres nyitott kérdést oldana meg 2.2 : univerzális viselkedésre utaló eredmény és egyúttal hasznos elméleti eszköz lenne
A kutatási projektjeim nagy részét külföldi társszerőimmel közösen tervezem véghezvinni. Ez, valamint a kutatási eredményeim elismert folyóiratokban való publikációja és jelentős konferenciákon való ismertetése hozzájárul a kutatói közegem nemzetközi elismertségének fenntartásához is. A nemzetközi élvonalt érdeklő kutatási témákkal foglalkozom, és ez időnként valóban versenyhelyzeteket idéz elő, de a tapasztalatom szerint a "versenytársaimmal" egymás iránt táplált kölcsönös tisztelet olykor "harcostárssá" tesz minket a megoldatlan probléma ellen vívott csatában.
A BME-n végzett oktatási tevékenységem részeként 2015-2016-ban a kutatásomba illeszkedő témájú színvonalas MSc szakdolgozatok témavezetője voltam. Ezt a jövőben is folytatni fogom, ezen kívül a TDK-témavezetés, illetve amint az egyetemi pozícióm lehetővé teszi, a PhD-témavezetés is ambícióm. A kutatási területeim módszereit és nyitott kérdéseit nagy kedvvel fogom a leendő doktoranduszaimmal megosztani.
A kutatás összefoglalója, célkitűzései laikusok számára Ebben a fejezetben írja le a kutatás fő célkitűzéseit alapműveltséggel rendelkező laikusok számára. Ez az összefoglaló a döntéshozók, a média, illetve az érdeklődők tájékoztatása szempontjából különösen fontos az NKFI Hivatal számára. Matematikus vagyok, a kutatásom tehát gondolatkísérlet, amely az empirikus kisérletek kiegészítéséül szolgál -- az elméleti és gyakorlati kutatás hitelesítik egymást és utat mutatnak egymásnak.
A kutatásom elméleti jellegű, de a kérdéseit valódi jelenségek ihlették. A célom ezen jelenségek kellően egyszerű modelljeinek matematikai precizitású vizsgálata -- ez a precizitás ugyan sok energiabefektetést igényel, de a gondolatkísérlet eredményének hitelességét csak így lehet garantálni.
Az általam vizsgált matematikai modellek nevei is az őket ihlető jelenségekről árulkodnak. A következő kérdéseket vizsgálom:
1. Véletlen gráfok:
1.1: erdőtűz-modell: az önszerveződő kritikus viselkedés jelenségét hivatott modellezni: az állandóan növekvő és ritka villámcsapások által gyújtott tüzektől tizedelt erdőben mi az összefüggés a villámcsapási ráta és a leégett erdő-részek nagysága közt?
1.2: járványterjedés-modell: falvak sorakoznak egy út mellett. A lakosok közt dúló járvány egy látszólag megállíthatatlan hullámként terjed tovább. Mi a legkevésbé költséges stratégia arra, hogy a járvány megálljon?
2. Korrelált perkolációs modellek:
2.1: "véletlen gubanc" (random interlacements): egy pórusoktól átszőtt közegben terjedő folyadék által átnedvesített térrész geometriáját vizsgáljuk. Igaz-e, hogy az átnedvesített térrész szinte gömb alakú?
2.2: "voter model": egymással versengő politikai pártok harcolnak egy óriási sakktáblán ülő szavazókért. Az azonos párt által uralt térrészek spontán lokális klaszterekbe hajlamosak rendeződni. Milyen erős kapcsolatot teremt ez a távoli térrészeken megfigyelhető makroszkopikus mintázatok között?
| Summary Summary of the research and its aims for experts Describe the major aims of the research for experts. 1. Random graphs:
1.1: to study the forest fire model [Ráth, Tóth, 2009, EJP] and the frozen percolation model [Ráth, 2009, JSP]: (i) to prove that the graph of the forest fire model is an inhomogeneous random graph, see [Bollobás, Janson, Riordan, RSA, 2007]. (ii) to find the scaling limit of the dynamics of connected components by modifying the "multiplicative coalescent" [Aldous, 1997, AoP]. (iii) to express the size of burnt components as a function of the lightning rate, see [Ráth, 2009, JSP], Conjecture 1.1.
1.2: to study supercritical SIR epidemics on the one dimensional "village" graph model of [Lalley, PTRF, 2009]. (i) to characterize the metastable state of the SIR epidemic. (ii) to find the cheapest strategy for reaching a stable (healed) state from the metastable state. (iii) to identify the cases where infection reaches all villages as a function of the number of villages and villagers.
2. Correlated percolation models:
2.1: to study the geometry of [Sznitman, 2010]'s "random interlacement" graph I^u for u<<1, d>=5. (i) showing that the graph metric of I^u becomes rotationally invariant as u->0, see [Cerny, Popov, 2012], Remark 1.2. (ii) to find the rate of convergence to 1 of the Bernoulli percolation threshold of the graph I^u as u->0, see [Ráth, Sapozhnikov, 2013, EJP].
2.2: to prove decoupling inequalities similar to [Popov, Teixeira, JEMS, 2015] for voter model percolation [Ráth, Valesin, 2016+, AoP].
What is the major research question? Describe here briefly the problem to be solved by the research, the starting hypothesis, and the questions addressed by the experiments. 1. Random graphs:
1.1: What is the precise mechanism behind the self-organized criticality of the forest fire and frozen percolation models? (i) What kind of inhomogeneous random graph do we see if we look at the forest fire model at a given moment? (ii) Do the large component sizes of the forest fire and frozen percolation models have the same scaling limit? (iii) What is the relation between the lightning rate and the size of burnt components?
1.2: When and how does the supercritical SIR epidemic stop in the one dimensional "village" model? (i) What is the shape of the travelling wave corresponding to the metastable state? (ii) What is the least costly strategy for the epidemic to reach a stable (healed) state from the metastable state? (iii) As a function of the number of villages and villagers, when does the infection reach every village?
2. Correlated percolation models:
2.1: What effect does it have on the geometry of "random interlacements" if the density of the interlacement goes to zero? (i) Does the macroscopic internal geometry of the interlacement become rotationally invariant as the density goes to zero? (ii) How small fraction of the interlacement should we delete in order to disconnect it into finite connected components?
2.2: What effect does the correlated nature of the stationary state of the voter model have on the large-scale patterns of voters with the same opinion? Does the voter model belong to the class of correlated percolation models for which we have decoupling inequalities as powerful as for, e.g., random interlacements?
What is the significance of the research? Describe the new perspectives opened by the results achieved, including the scientific basics of potential societal applications. Please describe the unique strengths of your proposal in comparison to your domestic and international competitors in the given field. The questions of my research are inspired by real-world phenomena and the methods of my solutions often come from statistical physics. My goal is to analyze simple enough models of these phenomena with mathematical rigor.
My research topics and the phenomena that they model:
1.1 : forest fire model: self-organized criticality 1.2 : supercritical SIR epidemics: metastability 2.1 : random interlacements: the geometry of the wet region created by water filtrating through an inhomogeneous material (percolation) 2.2 : voter model: it models the macroscopic spatial patterns created by the competition of biological species
Theoretical relevance of the planned results, in a nutshell:
1.1 : it would give a description of the universal behavior underlying the model-specific details 1.2 : it would give a description of the least costly strategy for the epidemic to stop 2.1 : it would show the rotational invariance of the wet region, a famous open question in other percolation models 2.2: it would be useful theoretical result that also indicates universal behavior
I plan to carry out the majority of my research projects with my international collaborators. This, as well as the the publication of my results in quality journals and the presentation of my results in notable conferences will contribute to the maintenance of the international recognition of my research environment.
I am involved in research that fits well into the international cutting edge, and sometimes this creates competition, but, according to my experience, the mutual respect between me and my "competitors" sometimes makes us "comrades" fighting in the battle against the unsolved problem.
As a part of my teaching activity at BME, in 2015-2016 I was the supervisor of two MSc theses with topics that fit into my research spectrum. I will continue doing this in the future. It is also my ambition to become a supervisor of students entering the National Scientific Students Associations Conference, and as soon as my position at BME permits, I would like to supervise PhD students. I will share the methods and open questions of my field of research with my to-be PhD students with great enthusiasm.
Summary and aims of the research for the public Describe here the major aims of the research for an audience with average background information. This summary is especially important for NRDI Office in order to inform decision-makers, media, and others. I am a mathematician, thus my research involves thought experiments, which complement empirical experiments -- theoretical and applied research validate and guide each other.
My research is theoretical, but the questions are inspired by real-world phenomena. My goal is to analyze simple enough models of these phenomena with mathematical rigor -- this rigor requires time and dedication, but this is the only way to guarantee the validity of the result of the thought experiment.
The mathematical models that I work with have telltale names. These are the questions that I study:
1. Random graphs:
1.1: forest fire model: it models the phenomenon called self-organized criticality: a permanently growing forest is occasionally hit by lightnings. What is the relation between the rate of lightnings and the size of the burnt forest patches?
1.2: epidemic model: we consider villages along a road. An epidemic sweeps through the villagers like an unstoppable wave. What is the least costly strategy for the epidemic to stop?
2. Correlated percolation models:
2.1: random interlacements: water percolates through a porous material. We study the geometry of the wet region. Does it look like a sphere?
2.2: voter model: political parties compete for voters that sit on a large chessboard. The regions ruled by the same political party tend to spontaneously form local clusters. How strong dependence does this effect create between the macroscopic patterns of distant regions?
|
|
|
|
|
|
|
Back »
|
|
|