Excited-state density functional theory  Page description

Help  Print 
Back »

 

Details of project

 
Identifier
123988
Type K
Principal investigator Nagy, Ágnes
Title in Hungarian Gerjesztett állapotok sűrűségfunkcionál elmélete
Title in English Excited-state density functional theory
Keywords in Hungarian sűrűségfunkcionál elmélet; gerjesztett állapotok
Keywords in English density functional theory; excited states
Discipline
Physics (Council of Physical Sciences)100 %
Ortelius classification: Quantum mechanics
Panel Physics 1
Department or equivalent Department of Theoretical Physics (University of Debrecen)
Starting date 2017-09-01
Closing date 2024-03-31
Funding (in million HUF) 6.320
FTE (full time equivalent) 3.62
state running project





 

Final report

 
Results in Hungarian
The density functional theory is one of the most popular and powerful methods in electron structure calculations. We extended this theory to excited states of Coulomb systems. These systems are very important as atoms, molecules and solids belong to them. Coulomb densities determine not only the Hamiltonians but the degree of excitations, too. One functional is enough for the ground and all excited states. This universal theory has been extended to degenerate states. The Kohn-Sham equations have also been derived. The exact form of a term in the Kohn-Sham potential, the so called exchange-correlation potential, is unknown. Several important properties of this potential have been explored. Exact relations and theorems have been derived and information-theoretical concepts have been applied in these investigations. Certain approximations have been generalized and illustrated for studying highly excited states of some atoms. A new version of the density functional theory, in which a set of spherically averaged densities is used instead of the density, has been generalized. This novel spherical theory has been extended to excited states. too. Thus, a new universal theory valid for ground and excited states has been constructed.
Results in English
A sűrűségfunkcionál elmélet az elektronszerkezeti számítások egyik leggyakoribb és leghatékonyabb módszere. Az elméletet kiterjesztettük Coulomb-redszerek gerjesztett állapotaira. Ezek nagyon fontos rendszerek, hiszen az atomok, molekulák és a szilárdtestek mind ide tartoznak. A Coulomb-sűrűségek nemcsak a Hamilton-operátort határozzák meg, hanem a gerjesztés fokát is. Az alap és gerjesztett állapotok leírására elegendő egyetlen funkcionál. Degenerált állapotokra is kiterjesztettük ezt az univerzális elméletet. Levezettük a Kohn-Sham-egyenleteket is. A Kohn-Sham-potenciál egy tagjának, az ún. kicserélődési-korrelációs potenciálnak, az egzakt alakja nem ismert. Feltártuk ezen potenciál számos fontos tulajdonságát. Egzakt relációkat és tételeket vezettünk le és ezekben a vizsgálatokban információ-elméleti fogalmakat is felhasználtunk. Általánosítottunk néhány közelítést és ezeket pár atom magasan gerjesztett állapotának vizsgálatával szemléltettük. Altalánosítottuk a sűrűségfunkcionál elmélet új változatát, melyben gömbszimmetrikusan átlagolt sűrűségeket használunk a sűrűség helyett. Ezt az új elméletet kiterjesztettük gerjesztett állapotokra is. Így egy új, alap és gerjesztett állapotokra egyaránt érvényes univerzális elméletet alkottunk.
Full text https://www.otka-palyazat.hu/download.php?type=zarobeszamolo&projektid=123988
Decision
Yes





 

List of publications

 
P. W. Ayers, M. Levy, A. Nagy: Time-Independent Density Functional Theory for Degenerate Excited States of Co ulomb Systems, Theoretical Chemistry Accounts accepted, 2018
A. Nagy: Phase Space View of Ensembles of Excited States, Acta Physico-Chimica Sinica 34, 492, 2018
A. Nagy: Time-dependent pair density functional theory, Eur. Phys. J. B. 9, 110, 2018
H. Levamaki, A. Nagy, I. Vilja, K. Kokko, L. Vitos: Kullback-Leibler and relative Fisher information as descriptors of locality, Int. J. Quantum Chem. 118, 2018
J. C. Bolívar., A. Nagy, E. Romera: Rényi-Fisher entropy product as a marker of topological phase transitions, Physica A 498, 66, 2018
A. Nagy: hermodynamical transcription of density functional theory with minimum Fisher information, Chem. Phys. Lett. 695, 149, 2018
A. Nagy: Orbital-free density functional theory: Pauli potential and densit y scaling, Many-body approaches at different scales,Part II. Chap. 21. Eds. G. G. N. Angilella, C. Amovilli, Springer, 2018. ISBN: 9783319723730, 2018
J. C. Bolivar - A. Nagy - E. Romera: Phase-space Fisher information of 2D gapped Dirac materials,, J. Math. Chem. 57, 1169, 2019
A. Nagy: A thermal orbital-free density functional approach, J. Chem. Phys. 151, 014103, 2019
A. Nagy: Density functional theory from spherically symmetric densities, J. Chem. Phys. 149, 204112, 2018
J. C. Bolivar - N. A. Cordero - A. Nagy - E. Romera: Fidelity as a marker of topological phase transitions in 2D Dirac materials, Int. J. Quantum Chem. 118, e25674, 2018
L. Y. Tian - H. Levamaki - M. Kuisma - K. Kokko - A. Nagy - L. Vitos: Density functional theory description of random Cu-Au alloys, Phys. Rev. B 99, 064202, 2019
L. Y. Tian - H. Levamaki - O.Eriksson - K. Kokko - A. Nagy -K. Delceg-Czijak - L. Vitos:: Density Functional Theory description of the order-disorder transformation in Fe-Ni, Scientific Reports 9, 8172, 2019
A. Nagy: Coordinate Scaling in Time-independent Excited-state Density Functional Theory for Coulomb Systems, Book of Abstracts 159, 18th International Conference on Density-Functional Theory and its Application, Alicante (Spain), 2019, 2019
A. Nagy: Gerjesztett állapotok Sűrűségfunkcionál elmélete, Magyar Kémiai Folyóirat 125, 123, 2019
A. Nagy: Coordinate Scaling in Time-independent Excited-state Density Functional Theory for Coulomb Systems, Computation 7, 59, 2019
A. Nagy: Spherical Density Functional Theory and Atoms in Molecules, J. Phys. Chem. A 124, 148–151, 2020
A. Nagy: Relative Information in Excited-State Orbital-Free DFT, International Journal of Quantum Chemistry 20, e26405, 2020
P. W. Ayers, M. Levy, A. Nagy: Time-Independent Density Functional Theory for Degenerate Excited States of Coulomb Systems, Theoretical Chemistry Accounts 137 (2018) 152, 2018
A. Nagy: Thermodynamical transcription of density functional theory with minimum Fisher information, Chem. Phys. Lett. 695, 149, 2018
A. Nagy: Orbital-free density functional theory: Pauli potential and density scaling, Many-body approaches at different scales,Part II. Chap. 21. Eds. G. G. N. Angilella, C. Amovilli, Springer, 2018. ISBN: 9783319723730, 2018
A. Nagy: Information Theoretical and Thermodynamic View of the Excited-state Density Functional Theory of Coulomb systems, J. Chem. Phys. 153, 154103, 2020
A. Nagy: Subspace Theory with Spherically Symmetric Densities, J. Chem. Phys. 154, 074103, 2021
A. Nagy: Fisher information and density functional theory, Int. J. Quantum Chem. (2021) e26679, 2021
A. Nagy: Density Functional Theory of Highly Excited States of Coulomb Systems,, Computation 9, 73, 2021
A. Nagy: Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle, Computation 9, 93., 2021
A. Nagy: Excited-state density functional theory, Chemical Reactivity: Volume 1: Theories and Principles Eds: S. Kaya, L. von Szentpaly, G. Serdaroglu and L. Guo, Elsevier, ISBN-13 9780323902571, 2023
A. Nagy: Spherical Potential Functional Theory, J. Chem. Phys. 155 144108, 2021
A. Nagy: Phase-space R'enyi entropy, complexity and thermodynamic picture of density functional theory, J. Math. Chem. 60, 2022
Á. Nagy, K. D. Sen: Nuclear Cusp and Critical Nuclear Charge, Molecular Physics accepted, 2022
A. Nagy: Coordinate Scaling in Time-independent Excited-state Density Functional Theory for Coulomb Systems, Computation 7, 59, 2019
A. Nagy: Density Functional Theory of Highly Excited States of Coulomb Systems,, Computation 9, 73, 2021
A. Nagy: Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle, Computation 9, 93., 2021
A. Nagy: Spherical Subspace Potential Functional Theory, Computation 11, 119, 2023
A. Nagy: Phase-space relative Rényi entropy in density functional theory, Int. J. Quantum Chem. (2023) e27226, 2023
A. Nagy: Pair density functional theory for excited states of Coulomb systems, Theor. Chem. Accounts, 142 (2023) 72., 2023
A. Nagy: Orbital-free Spherical Density Functional Theory, Letters in Mathematical Physics 112 (2022) 107, 2022
A. Nagy: Time-dependent pair density functional theory, Eur. Phys. J. B. 91, 110, 2018
H. Levamaki, A. Nagy, I. Vilja, K. Kokko, L. Vitos: Kullback-Leibler and relative Fisher information as descriptors of locality, Int. J. Quantum Chem. 118, e25557, 2018
A. Nagy: Fisher information and density functional theory, Int. J. Quantum Chem. 122 e26679, 2021
A. Nagy: Phase-space R'enyi entropy, complexity and thermodynamic picture of density functional theory, J. Math. Chem. 61, 296, 2022
Á. Nagy, K. D. Sen: Nuclear Cusp and Critical Nuclear Charge, Molecular Physics 2022 e2131643, 2022
A. Nagy: Phase-space relative Rényi entropy in density functional theory, Int. J. Quantum Chem. 124, e27226, 2023
A. Nagy: Orbital-free Spherical Density Functional Theory, Letters in Mathematical Physics 112, 107, 2022
A. Nagy: Spherical densities and potential in exactly solvable molecules, J. Chem. Phys. 159, 144101, 2023
A. Nagy: Spherically Averaged Densities as Basic DFT Variables, Advances in Methods and Applications of Quantum Systems in Chemistry, Physics, and Biology, Ed. I. Grabowski, K. Słowik, J. Maruani, E. Brandas, Springer;, 2024




Back »