|
Excited-state density functional theory
|
Help
Print
|
Here you can view and search the projects funded by NKFI since 2004
Back »
|
|
List of publications |
|
|
P. W. Ayers, M. Levy, A. Nagy: Time-Independent Density Functional Theory for Degenerate Excited States of Co ulomb Systems, Theoretical Chemistry Accounts accepted, 2018 | A. Nagy: Phase Space View of Ensembles of Excited States, Acta Physico-Chimica Sinica 34, 492, 2018 | A. Nagy: Time-dependent pair density functional theory, Eur. Phys. J. B. 9, 110, 2018 | H. Levamaki, A. Nagy, I. Vilja, K. Kokko, L. Vitos: Kullback-Leibler and relative Fisher information as descriptors of locality, Int. J. Quantum Chem. 118, 2018 | J. C. Bolívar., A. Nagy, E. Romera: Rényi-Fisher entropy product as a marker of topological phase transitions, Physica A 498, 66, 2018 | A. Nagy: hermodynamical transcription of density functional theory with minimum Fisher information, Chem. Phys. Lett. 695, 149, 2018 | A. Nagy: Orbital-free density functional theory: Pauli potential and densit y scaling, Many-body approaches at different scales,Part II. Chap. 21. Eds. G. G. N. Angilella, C. Amovilli, Springer, 2018. ISBN: 9783319723730, 2018 | J. C. Bolivar - A. Nagy - E. Romera: Phase-space Fisher information of 2D gapped Dirac materials,, J. Math. Chem. 57, 1169, 2019 | A. Nagy: A thermal orbital-free density functional approach, J. Chem. Phys. 151, 014103, 2019 | A. Nagy: Density functional theory from spherically symmetric densities, J. Chem. Phys. 149, 204112, 2018 | J. C. Bolivar - N. A. Cordero - A. Nagy - E. Romera: Fidelity as a marker of topological phase transitions in 2D Dirac materials, Int. J. Quantum Chem. 118, e25674, 2018 | L. Y. Tian - H. Levamaki - M. Kuisma - K. Kokko - A. Nagy - L. Vitos: Density functional theory description of random Cu-Au alloys, Phys. Rev. B 99, 064202, 2019 | L. Y. Tian - H. Levamaki - O.Eriksson - K. Kokko - A. Nagy -K. Delceg-Czijak - L. Vitos:: Density Functional Theory description of the order-disorder transformation in Fe-Ni, Scientific Reports 9, 8172, 2019 | A. Nagy: Coordinate Scaling in Time-independent Excited-state Density Functional Theory for Coulomb Systems, Book of Abstracts 159, 18th International Conference on Density-Functional Theory and its Application, Alicante (Spain), 2019, 2019 | A. Nagy: Gerjesztett állapotok Sűrűségfunkcionál elmélete, Magyar Kémiai Folyóirat 125, 123, 2019 | A. Nagy: Coordinate Scaling in Time-independent Excited-state Density Functional Theory for Coulomb Systems, Computation 7, 59, 2019 | A. Nagy: Spherical Density Functional Theory and Atoms in Molecules, J. Phys. Chem. A 124, 148–151, 2020 | A. Nagy: Relative Information in Excited-State Orbital-Free DFT, International Journal of Quantum Chemistry 20, e26405, 2020 | P. W. Ayers, M. Levy, A. Nagy: Time-Independent Density Functional Theory for Degenerate Excited States of Coulomb Systems, Theoretical Chemistry Accounts 137 (2018) 152, 2018 | A. Nagy: Thermodynamical transcription of density functional theory with minimum Fisher information, Chem. Phys. Lett. 695, 149, 2018 | A. Nagy: Orbital-free density functional theory: Pauli potential and density scaling, Many-body approaches at different scales,Part II. Chap. 21. Eds. G. G. N. Angilella, C. Amovilli, Springer, 2018. ISBN: 9783319723730, 2018 | A. Nagy: Information Theoretical and Thermodynamic View of the Excited-state Density Functional Theory of Coulomb systems, J. Chem. Phys. 153, 154103, 2020 | A. Nagy: Subspace Theory with Spherically Symmetric Densities, J. Chem. Phys. 154, 074103, 2021 | A. Nagy: Fisher information and density functional theory, Int. J. Quantum Chem. (2021) e26679, 2021 | A. Nagy: Density Functional Theory of Highly Excited States of Coulomb Systems,, Computation 9, 73, 2021 | A. Nagy: Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle, Computation 9, 93., 2021 | A. Nagy: Excited-state density functional theory, Chemical Reactivity: Volume 1: Theories and Principles Eds: S. Kaya, L. von Szentpaly, G. Serdaroglu and L. Guo, Elsevier, ISBN-13 9780323902571, 2023 | A. Nagy: Spherical Potential Functional Theory, J. Chem. Phys. 155 144108, 2021 | A. Nagy: Phase-space R'enyi entropy, complexity and thermodynamic picture of density functional theory, J. Math. Chem. 60, 2022 | Á. Nagy, K. D. Sen: Nuclear Cusp and Critical Nuclear Charge, Molecular Physics accepted, 2022 | A. Nagy: Coordinate Scaling in Time-independent Excited-state Density Functional Theory for Coulomb Systems, Computation 7, 59, 2019 | A. Nagy: Density Functional Theory of Highly Excited States of Coulomb Systems,, Computation 9, 73, 2021 | A. Nagy: Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle, Computation 9, 93., 2021 | A. Nagy: Spherical Subspace Potential Functional Theory, Computation 11, 119, 2023 | A. Nagy: Phase-space relative Rényi entropy in density functional theory, Int. J. Quantum Chem. (2023) e27226, 2023 | A. Nagy: Pair density functional theory for excited states of Coulomb systems, Theor. Chem. Accounts, 142 (2023) 72., 2023 | A. Nagy: Orbital-free Spherical Density Functional Theory, Letters in Mathematical Physics 112 (2022) 107, 2022 | A. Nagy: Time-dependent pair density functional theory, Eur. Phys. J. B. 91, 110, 2018 | H. Levamaki, A. Nagy, I. Vilja, K. Kokko, L. Vitos: Kullback-Leibler and relative Fisher information as descriptors of locality, Int. J. Quantum Chem. 118, e25557, 2018 | A. Nagy: Fisher information and density functional theory, Int. J. Quantum Chem. 122 e26679, 2021 | A. Nagy: Phase-space R'enyi entropy, complexity and thermodynamic picture of density functional theory, J. Math. Chem. 61, 296, 2022 | Á. Nagy, K. D. Sen: Nuclear Cusp and Critical Nuclear Charge, Molecular Physics 2022 e2131643, 2022 | A. Nagy: Phase-space relative Rényi entropy in density functional theory, Int. J. Quantum Chem. 124, e27226, 2023 | A. Nagy: Orbital-free Spherical Density Functional Theory, Letters in Mathematical Physics 112, 107, 2022 | A. Nagy: Spherical densities and potential in exactly solvable molecules, J. Chem. Phys. 159, 144101, 2023 | A. Nagy: Spherically Averaged Densities as Basic DFT Variables, Advances in Methods and Applications of Quantum Systems in Chemistry, Physics, and Biology, Ed. I. Grabowski, K. Słowik, J. Maruani, E. Brandas, Springer;, 2024 |
|
|
|
|
|
|
Back »
|
|
|