Analysis of continuous and discrete mathematical models in biology, chemistry and genetics  Page description

Help  Print 
Back »

 

Details of project

 
Identifier
125119
Type SNN
Principal investigator Faragó, István
Title in Hungarian A folytonos és diszkrét matematikai modellek vizsgálata a biológiában, kémiában és a genetikában
Title in English Analysis of continuous and discrete mathematical models in biology, chemistry and genetics
Keywords in Hungarian Parciális differenciálegyenletek, Dinamikai rendszerek, Numerikus módszerek, Kvalitatív tulajdonságok
Keywords in English Partial differential equations, Dynamical systems, Numerical methods, Qualitative properties
Discipline
Mathematics (Council of Physical Sciences)100 %
Ortelius classification: Applied mathematics
Panel Mathematics and Computing Science
Department or equivalent Applied Analysis and Computational Mathematics (Eötvös Loránd University)
Participants Csomós, Petra
Dénes, Attila
Fekete, Imre
Havasi, Ágnes
Horváth, Róbert
Karátson, János
Kiss, Márton
Mincsovics, Miklós
Simon, László
Van Leeuwen-Polner, Mónika
Vas, Gabriella Ágnes
Starting date 2017-12-01
Closing date 2023-09-30
Funding (in million HUF) 28.851
FTE (full time equivalent) 17.44
state closed project
Summary in Hungarian
A kutatás összefoglalója, célkitűzései szakemberek számára
Itt írja le a kutatás fő célkitűzéseit a témában jártas szakember számára.

A kutatás fő célja folytonos és diszkrét biológiai, kémiai és genetikus modellek tervezése, a meglévők kiterjesztése és elemzése. Kiemelt figyelmet fordítunk folytonos és diszkrét modellek kvalitatív tulajdonságainak megértésére, igazolására. A folytonos modellek kvalitatív tulajdonságai releváns információt adnak megbízható numerikus módszerek konstruálásához. Diszkrét szinten történő megőrzésük előnyös volna, mert ezek még jobbá teszik a numerikus módszereket. A nemzetközi csoport összetételéből adódóan elsősorban járványterjedési modellekkel foglalkozunk.
A jobb megértéshez és jellemzéshez az alábbi a stratégiánk: a szakirodalomban lévő modelleket terjesztjük ki alkalmas módon. Ezeknek több irányát kutatjuk.
Egyrészt a betegségekre jellemző térbeli terjedés okán térbeli függést adunk az eredeti közönséges differenciálegyenlet rendszerekhez. Ez egy természetes kiterjesztés, hiszen a betegségek térbeli terjedését jellemezzük. A térbeli függés hozzáadása azt jelenti, hogy ezentúl parciális integro differenciálegyenletekkel foglalkozunk.
Másrészt a lappangási időszakot nem közelítő egyenletek felírásával vesszük figyelembe, hanem késleltetést adunk az egyenletekhez. Mivel a csoportban néhányan a késleltetett differenciálegyenletek specialistái, ezért azt várjuk, hogy megfelelő elméleti eredményeket igazolunk ilyen típusú modellek esetén és megbízható numerikus módszereket adunk.
A kettő technika kombinálásával nyerjük a legkomplexebb modelleket. Ezek megértése igazi kihívás, de ezek modellezik legjobban a valós folyamatokat.

Mi a kutatás alapkérdése?
Ebben a részben írja le röviden, hogy mi a kutatás segítségével megválaszolni kívánt probléma, mi a kutatás kiinduló hipotézise, milyen kérdéseket válaszolnak meg a kísérletek.

A fenti alpontra adott válasz értelmében a térbeli terjedés és/vagy késleltetés, a kettő hozzáadása jelentős változtatásokat jelentenek a meglévő modellekre nézve. Ezekkel alapvetően megváltozik az eredeti rendszer, mert a modellek lényegesen bonyolultabbá válnak és megértésükhöz, eredmények igazolásához mélyebb matematikai apparátusra van szükségünk. A kutatócsoportnak a funkcionálanalízis és parciális differenciálegyenletek területén is specialistái vannak, így kezelve a felmerülő kihívásokat.
Az ily módon kiterjesztett folytonos modellek kvalitatív tulajdonságainak igazolása mindenkori alappillér annak érdekében, hogy megbízható numerikus szimulációkat hajtsunk végre. Ezért a lépés döntő fontosságú, mert ezeket a tulajdonságokat ideális esetben a numerikus módszerektől is elvárjuk, ezért ilyen típusú módszerek megalkotására törekedünk.
Térbeli terjedés esetén a betegséget szeretnénk lokalizálni. Ez az eredeti modellek térbeli függésének hozzáadásával kivitelezhető. Ezen parciális integro differenciálegyenletek elemzése nagy kihívás. Ugyanakkor a kutatócsoportnak már vannak előzetes eredményei kvalitatív tulajdonságok megőrzése terén.
A késleltetés modellhez történő hozzáadása talán jobb és természetesebb feltétel, mint egy lappangási időszakra felírt közelítő egyenlet. Szerencsére a csoportnak vannak delay szakértői, ezért ez az irány nagyon bíztató.
A kettő kombinálása pedig a valósághoz legközelebbi és legrealisztikusabb modellt teszi lehetővé. Ugyanakkor a kettő kombinálása a térbeli terjedés és a késleltetési hatás kontrollálását kívánja meg. Ez pedig mély matematikai ismeret tételez föl a kontroll és hozzátartozó numerikus módszerek elméletében.

Mi a kutatás jelentősége?
Röviden írja le, milyen új perspektívát nyitnak az alapkutatásban az elért eredmények, milyen társadalmi hasznosíthatóságnak teremtik meg a tudományos alapját. Mutassa be, hogy a megpályázott kutatási területen lévő hazai és a nemzetközi versenytársaihoz képest melyek az egyediségei és erősségei a pályázatának!

A matematikai modellezés valós folyamatok megértésében mindig is fontos szerepet töltött be. Az ezredforduló kezdete óta a matematikai biológia egyes kérdései hihetetlen lendületet kaptak. Ennek a fő oka, hogy korunk nagy kihívásainak egyik legfontosabb csoportja. Az Európai Unió kiemelt figyelmet szentel betegségek terjedésének (vagy akár a migrációs mozgások) megértésére. A nemzetközi csoportunk egyedisége és erőssége abban áll, hogy ezeket a kérdéseket új technikával kívánja vizsgálni és megérteni. Nevezetesen olyan numerikus módszereket használunk majd, melyek a diszkrét modellek kvalitatív tulajdonságain nyugszanak. Ezeket a tulajdonságok pedig a kiterjesztett folytonos modellek kvalitatív tulajdonságain alapulnak.
A kutatócsoport vezetők tudományos pályájuk jelentős részében folytonos és diszkrét modellek kvalitatív tulajdonságok igazolásával foglalkoztak és jelentős eredményeket értek el. Ez önmagában garancia arra, hogy a fejlesztendő modellek és numerikus módszerek is alkalmasak lesznek. A csoporttagok többsége pedig a szükséges területek szakértői.
A járványterjedési problémák vizsgálatára többféle népszerű megközelítés létezik. Ezek bifurkációs, gráfelmélethez és Markov folyamatokhoz kötődő technikák. Ezekkel a megközelítésekkel szemben itt talán jobb lehetőségünk nyílik a betegségek megértésére és lokalizációjára is. Ennek következtében a modellek megértése után tudhatjuk, hogy mely területen lehet érdemes oltani, a késleltetés révén pedig azt is láthatjuk, hogy mikortól érdemes oltani.

A kutatás összefoglalója, célkitűzései laikusok számára
Ebben a fejezetben írja le a kutatás fő célkitűzéseit alapműveltséggel rendelkező laikusok számára. Ez az összefoglaló a döntéshozók, a média, illetve az érdeklődők tájékoztatása szempontjából különösen fontos az NKFI Hivatal számára.

Az ezredforduló kezdete óta a matematikai biológia egyes kérdései hihetetlen lendületet kaptak. Ennek a fő oka, hogy korunk nagy kihívásainak egyik legfontosabb csoportja. Például különböző betegségek terjedésének vagy a migrációs folyamatnak a megértése fontos szerepet játszik egy európai állampolgár életében. Ezért nem meglepő, hogy az Európai Unió kiemelt figyelmet szentel ezek megértésére.
Úgynevezett matematikai modelleket írunk fel ezen valós folyamatok megértésére. Nyilvánvalóan ezek a valós problémák egyszerűsítései, de a megoldásaik mégis jól válaszokat adnak az eredeti probléma kérdéseire.
Első lépésként megfelelő modelleket kell adnunk és vizsgálnunk ezek kvalitatív tulajdonságait. Ennek érdekében mély matematikai apparátust használunk. A már kiterjesztett modellek felírása után próbáljuk meghatározni ezeket a minőségi tulajdonságokat és megadni a hozzátartozó numerikus módszereket. A numerikus módszerektől azt várjuk el, hogy a minőségi tulajdonságok analóg tulajdonságaival rendelkezzenek. Ez a megbízhatóbb numerikus szimulációk miatt kívánatos.
A numerikus szimulációk elemzése után vagyunk abban a helyzetben, hogy a felmerülő kérdésekre specifikus válaszokat adjunk.
Betegségek esetében ezek jelenthetik azt, hogy tudni fogjuk, hogy hol és mikortól érdemes oltani. Ezek pedig hatékony oltási eljárásokat és stratégiákat eredményezhetnek. Ennek következtében pedig a felmerül költségeket is csökkenteni tudjuk.
Migráció esetében pedig képesek leszünk megérteni a folyamatot és a mozgást is.
Summary
Summary of the research and its aims for experts
Describe the major aims of the research for experts.

From the beginning of the millennium certain questions of mathematical biology became relevant. The reason of this trend is that mathematical biology addresses deep questions facing humankind. For example understanding transmissions of different diseases and migration processes are playing crucial roles in the life of an average European citizen. So it is not surprising that the European Union pays strategic attention to these issues.
In order to understand these real-life phenomena we need to create so-called mathematical models. Obviously these are simplifications of the real-life problems but their solutions give us good answers for the questions of the original problems.
As a first step we need to desing appropriate models and investigate their qualitative properties. In order to do that we have to use deep mathematical tools. After creating these enhanced models we are going to derive qualitative properties and design the corresponding numerical methods. We expect from the numerical methods that they have the discrete analogues of these qualitative properties. It is required in order to perform reliable numerical simulations.
After analyzing the solutions of the numerical simulations we are in the position to give specific answers for the arising questions.
In case of diseases these answers could mean that we are going to know where we should vaccinate and when it is worth vaccinating. These results can provide efficient injection procedures and strategies. It follows that we can reduce the costs as well.
In case of migration we could be able to understand potential movements and the migration process in itself.

What is the major research question?
Describe here briefly the problem to be solved by the research, the starting hypothesis, and the questions addressed by the experiments.

Based on the above given answer, adding spatial transmission and/or delay to our models or using combination of them will radically change the structures of the existing models. These changes mean that the models become more complicated and in order to understand and verify theoretical properties and design better numerical methods we need deeper mathematical tools. The research team has specialists in the theory of functional analysis and partial differential equations in order to treat the arising challenges.
Verified qualitative properties of the enhanced continuous models are the bases for performing reliable numerical simulations. Therefore this step is crucial, since in an ideal case we also expect these qualitative properties from the numerical methods, therefore we are going to focus on designing such methods.
In case of spatial transmission we would like to localize the diseases. This can be done by adding spatial variables to the original models. Analyzing these kind of partial intergro-differential equations are challenging, but the research team has preliminary results in this topic in terms of qualitative properties.
The usage of delay equations seems a better and more natural condition rather than by using an approximate equation for exposed periods. Luckily we have delay experts in this research team, therefore our hope in that research direction is very promising.
Combination of them produces the most precise and realistic models. However, this kind of combination means that we have to control the spatial transmission and the delay effect as well. This requires deep knowledge of control thery and corresponding numerical methods.

What is the significance of the research?
Describe the new perspectives opened by the results achieved, including the scientific basics of potential societal applications. Please describe the unique strengths of your proposal in comparison to your domestic and international competitors in the given field.

Mathematical modeling always plays an important role in understanding real-life phenomena. From the beginning of the millennium certain questions of mathematical biology became relevant. The reason of this trend is that mathematical biology addresses deep questions facing humankind. The European Union pays strategic attention to the issues understanding different diseases and migration processes. The uniqueness and power of this international research team is that we investigate and understand these questions by using new techniques. Namely, we are going to use numerical methods which will be based on the qualitative properties of the discrete models. These properties are coming from the enhanced continuous models and their qualitative properties.
In a major part of the scientific career of the principal investigators, they were focusing on verifying qualitative properties of different continuous and discrete models and they have achieved significant results. These guarantee that the enhanced models and the corresponding numerical methods will be appropriate for the required purposes. Most of the members are specialists in the required fields.
There are popular techniques to investigate epidemic models. These include bifurcation techniques, graph theory and Markov chains related techniques. In contrast with these approaches we may expect that we have better chances understanding these models and we hope better localization of the diseases. These may immediately mean that by using control theoretical techniques we may know where we should vaccinate and due to delay when it is worth vaccinating.

Summary and aims of the research for the public
Describe here the major aims of the research for an audience with average background information. This summary is especially important for NRDI Office in order to inform decision-makers, media, and others.

From the beginning of the millennium certain questions of mathematical biology became relevant. The reason of this trend is that mathematical biology addresses deep questions facing humankind. For example understanding transmissions of different diseases and migration processes are playing crucial roles in the life of an average European citizen. So it is not surprising that the European Union pays strategic attention to these issues.
In order to understand these real-life phenomena we need to create so-called mathematical models. Obviously these are simplifications of the real-life problems but their solutions give us good answers for the questions of the original problems.
As a first step we need to desing appropriate models and investigate their qualitative properties. In order to do that we have to use deep mathematical tools. After creating these enhanced models we are going to derive qualitative properties and design the corresponding numerical methods. We expect from the numerical methods that they have the discrete analogues of these qualitative properties. It is required in order to perform reliable numerical simulations.
After analyzing the solutions of the numerical simulations we are in the position to give specific answers for the arising questions.
In case of diseases these answers could mean that we are going to know where we should vaccinate and when it is worth vaccinating. These results can provide efficient injection procedures and strategies. It follows that we can reduce the costs as well.
In case of migration we could be able to understand potential movements and the migration process in itself.





 

Final report

 
Results in Hungarian
A kutatás fő célja folytonos és diszkrét biológiai, és kémiai modellek tervezése, a meglévők kiterjesztése és elemzése. Kiemelt figyelmet fordítottunk folytonos és diszkrét modellek kvalitatív tulajdonságainak megértésére, és azok matematikai igazolására. A COVID járvány miatt elhúzódó idő lehetőséget adott arra, hogy viszonylag sokrétű kutatásokat folytassunk, amelyek egy részét a szlovén kollégákkal közös munka keretében folytattuk. A kutatásaink legfontosabb eredményei az időközben nagyon aktuálissá vált járványterjedési modellek matematikai vizsgálata, de számos fontos részterületen értünk el eredményeket. Így a járványterjedés folytonos és numerikus modellezésben, a megbízható numerikus modellek előállításában, a modellek stabilitásvizsgálatában, a hatékony prekondicionálási eljárások vizsgálatában, konvergenciagyorsító eljárások kidolgozásába kidolgozásában és mindezek sikeres alkalmazásában. A pályázat keretében 104 publikáció született az NKFIH számára feltüntetett köszönetnyilvánítással, döntő többségében vezető, magas impakt faktorú folyóiratokban. Közöttük három dolgozat a szlovén kollégákkal közös munka eredménye. Emellett számos más nemzetközi együttműködésben is részt vettünk. (Ezeket az éves beszámolókon rendre felsoroltuk.) A pályázati idő alatt száznál is több nemzetközi konferencián vettünk részt, amelynek jelentős részében meghívott plenáris előadók voltunk.
Results in English
The main purpose of the research was to design continuous and discrete biological and chemical models, as well as extend and analyze the existing ones. We paid special attention to understanding the qualitative properties of continuous and discrete models and their mathematical justification. The prolonged time gave us the opportunity to conduct relatively diverse research, some of which was conducted in the framework of joint research with Slovenian colleagues. They are related to the analysis of epidemic spread models, which have become relevant in the meantime, but we have achieved results in many other important subfields as well. Scientifically, we have achieved significant results in the continuous and numerical modeling of the spread of the epidemic, in the production of reliable numerical models, in the stability analysis of models, in the construction and testing of effective preconditioning procedures, etc., and in their successful applications. Within the project, 104 publications were published with acknowledgments to NKFIH, the vast majority of them in leading journals with a high impact factor. Among them, three publications are the result of joint work with Slovenian colleagues. We have also participated in several further international collaborations (listed sequentially in the annual reports). During the application period, we participated in more than a hundred international conferences, in a significant part of which we were invited to plenary speakers.
Full text https://www.otka-palyazat.hu/download.php?type=zarobeszamolo&projektid=125119
Decision
Yes





 

List of publications

 
O. Axelsson, J. Karátson: Krylov improvements of the Uzawa method for Stokes type operator matrices, NUMERISCHE MATHEMATIK 148:3, pp. 611-631 (2021), 2021
B. Borsos, J. Karátson,: Quasi-Newton variable preconditioning for nonlinear nonuniformly monotone elliptic problems posed in Banach spaces, IMA JOURNAL OF NUMERICAL ANALYSIS, 2021
B. Borsos, J. Karátson: Robust iterative solvers for Gao type nonlinear beam models in elasticity, COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2021
L. Boda, I. Farago, T. Kalmár-Nagy: The Average Method is much better than average,, Journal of Computational and Applid Mechanics, 2021
I. Farago, R. Mosleh: Positively invariant Semi-Implicit Discrete Model for malaria propagation, Anals. Univ. I. Cuza Iassi. Mat. (N.S.) 66 (2020) 197-214., 2020
P. Mandal, I. Farago: Operator splitting and error analysis in malaria modeling, Applied Mathematics and Computation 410 (2021) 126446, 2021
P. Csomós, E. Sikolya: Numerical analysis view on general Trotter–Kato product formulae, Acta Scientiarum Mathematicarum (Szeged) 87, 307–329 (2021), 2021
P. Csomós, M. Ehrhardt, B. Farkas: Operator splitting for abstract Cauchy problems with dynamical boundary condition, Operators and Matrices 15, 903–935 (2021), 2021
S. Barua, A. Dénes, M. A. Ibrahim: A seasonal model to assess intervention strategies for preventing periodic recurrence of Lassa fever, Heliyon 7(2021), No. 8, e07760, 2021
M. V. Barbarossa, N. Bogya, A. Dénes, G. Röst, H. V. Varma, Zs. Vizi: Fleeing lockdown and its impact on the size of epidemic outbreaks in the source and target regions – a COVID-19 lesson, Sci. Rep. 11(2021), 9233, 2021
M. A. Ibrahim, A. Dénes: A mathematical model for Lassa fever transmission dynamics in a seasonal environment with a view to the 2017–20 epidemic in Nigeria, Nonlinear Anal. Real World Appl. 60(2021), 103310, 2021
M. A. Ibrahim, A. Dénes: Threshold dynamics in a model for Zika virus disease with seasonality, Bull. Math. Biol. 83(2021), Article No. 27, 2021
A. Dénes, G. Röst: Single species population dynamics in seasonal environment with short reproduction period, Comm. Pure Appl. Anal. 20 (2021), 755–762, 2021
M. A. Ibrahim, A. Dénes: hreshold and stability results in a periodic model for malaria transmission with partial immunity in humans, Appl. Math. Comput. 392(2021), 125711, 2021
L. Spek, M. Polner, K Dijkstra, S.A van Gils: Dynamics of delayed >> neural field models in two-dimensional spatial domains, Journal of Differential Equations ( under review), 2022
Zlatev Z., Dimov I., Faragó I., Georgiev K., Havasi, Á.: Efficient implementation of advanced Richardson Extrapolation in an atmospheric chemical scheme, Journal of Mathematical Chemistry 60 219-238, 2022
L. Spek, M. Polner, K Dijkstra, S.A van Gils: Dynamics of delayed neural field models in two-dimensional spatial domains, JOURNAL OF DIFFERENTIAL EQUATIONS 317 439-473, 2022
B. Borsos, J. Karátson: QuasiNewton Iterative Solution of Non-Orthotropic Elliptic Problems in 3D with Boundary Nonlinearity, COMPUTATIONAL METHODS IN APPLIED MATHEMATICS 22 : 2 327-340, 2022
B. Hingyi, J. ; Karátson: Detection of dead cores for reaction-diffusion equations with a non-smooth nonlinearity, Applied Numerical Mathematics, 177, 111-122, 2022
J. Karátson,: Sobolev gradient type iterative solution methods for a nonlinear 4th order elastic plate equation, JOURNAL OF COMPUTATIONAL PHYSICS 463 Paper: 111235, 2022
Zlatev Z., Dimov I., Faragó I., Georgiev K., Havasi, Á.: Running an atmospheric chemistry scheme from a large air pollution model by using advanced versions of the Richardson Extrapolation, LECTURE NOTES IN COMPUTER SCIENCE (0302-9743 1611-3349): 13127 pp 188-197, 2022
Bayleyegn T., Faragó, I., Havasi, Á.: On the Consistency Order of Runge-Kutta Methods Combined with Active Richardson Extrapolation, LECTURE NOTES IN COMPUTER SCIENCE (0302-9743 1611-3349): 13127 pp 101-108, 2022
P. Csomós, D. Kunszenti-Kovács: A second-order Magnus-type integrator for evolution equations with delay, IMA Journal of Numerical Analysis,, 2022
B. Takács, I. Faragó, R. Horváth, D. Repovš: Qualitative Properties of Space-Dependent SIR Models with Constant Delay and Their Numerical Solutions, COMPUTATIONAL METHODS IN APPLIED MATHEMATICS 22 : 3 713-728., 2022
R. Horváth: Numerical solution of differential equations, qualitative properties and applications, Csuhaj-Varjú, Erzsébet; Sziklai, Péter (szerk.) Conference on Developments in Computer Science : Budapest, Hungary, June 17-19, 2021, Proceedings, ISBN 978-963-489-388-2, 2022
R. Opoku-Sarkodie, F. Bartha, M. Polner, G. Röst: Dynamics of an SIRWS model with waning of immunity and varying immune boosting period, JOURNAL OF BIOLOGICAL DYNAMICS 16:1 596-618., 2022
F. A. Bartha, P. Boldog, T. Tekeli, Zs. Vizi, A. Dénes, G. Röst: Potential severity, mitigation, and control of Omicron waves depending on pre-existing immunity and immune evasion,, R. P. Mondaini (Ed.), Trends in Biomathematics: Stability and Oscillations in Environmental, Social and Biological Models – Selected Works from the 21st BIOMAT Consortiu, 2022
T. Tekeli, A. Dénes, G. Röst: Adaptive group testing in a compartmental model of COVID-19, Math. Biosci. Eng., 19, 11018–11033., 2022
M. A. Ibrahim, A. Dénes: A mathematical model for the spread of Varroa mites in honeybee populations: two simulation scenarios with seasonality, Heliyon 8, e10648., 2022
T. Bayleyegn,| I. Faragó, Á. Havasi: On the consistency and convergence of classical Richardson extrapolation as applied to explicit one-step methods, Mathematical Modelling and Analysis, 2022
I. Faragó, R. Mosleh: Some qualitative properties of the discrete models for malaria propagation, Applied Mathematics and Computation, 439 127628, 2023
L.Boda, I. Faragó: Effectivety analysis of operator splitting and the Average Method, Ehrhardt, M., Günther, M. (eds) Progress in Industrial Mathematics at ECMI 2021. ECMI 2021. Mathematics in Industry) 39 (2022) 39-45 . Springer, Cham., 2022
I. Faragó, M. E. Mincsovics, R. Mosleh: Qualitatively correct numerical methods for the basic Ross–Macdonald malaria model, Ehrhardt, M., Günther, M. (eds) Progress in Industrial Mathematics at ECMI 2021. ECMI 2021. Mathematics in Industry) 39 (2022) 75-81 . Springer, Cham., 2022
I. Farago, G. Sebestyén: The Carleman linearization method for boundary value problems, in: Advances in Mathematics Research (edited by A. B. Baswell) 31(2022) Chapter 10, 259-292 Nova Science Publisher, ISBN 979-8-88697-332-7, 2022
D. Keliger, I. Horváth, B.Takács,: Local-density dependent Markov processes on graphons with epidemiological applications,, Stochastic Processes and their Applications, 148, 324-352, 2022
B. Takács, Y. Hadjimichael: High order discretization methods for spatial- dependent epidemic models, Mathematics and Computers in Simulation, Volume 198, 211-236,, 2022
: M.E. Mincsovics , T. Kalmár-Nagy: Splitting headache: How well do splitting methods preserve stability?, International Journal of Non-Linear Mechanics https://doi.org/10.1016/j.ijnonlinmec.2022.104309., 2022
Mónika Polner, Sándor Varró, Anett Vörös-Kiss: The role of the time delay in the reflection and transmission of ultrashort electromagnetic pulses on a system of parallel current sheets,, PHYSICA SCRIPTA 94 : 4 , 2019., 2019
M. Kiss: An Ambarzumian type theorem on graphs with odd cycles, Ukrainian Mathematical Journal 74 (2023) 1916-1923, 2023
P. Csomós, D. Kunszenti-Kovács: A second-order Magnus-type integrator for evolution equations with delay, IMA Journal of Numerical Analysis, Volume 43, Issue 5, September 2023, Pages 2965–2997, 2023
T. Bayleyegn,| I. Faragó, Á. Havasi: On the consistency and convergence of classical Richardson extrapolation as applied to explicit one-step methods, Mathematical Modelling and Analysis 28 pp. 42-52,2023, 2023
I. Faragó, R. Mosleh: Some qualitative properties of the discrete models for malaria propagation, Applied Mathematics and Computation, 439 127628, 2023
L. Boda, I. Faragó: Effectivety analysis of operator splitting and the Average Method, Ehrhardt, M., Günther, M. (eds) Progress in Industrial Mathematics at ECMI 2021. ECMI 2021. Mathematics in Industry) 39 (2022) 39-45 . Springer, Cham., 2022
M.E. Mincsovics , T. Kalmár-Nagy: Splitting headache: How well do splitting methods preserve stability?, International Journal of Non-Linear Mechanics https://doi.org/10.1016/j.ijnonlinmec.2022.104309., 2022
T. Bayleyegn. I. Faragó, Á. Havasi: On the Consistency and Convergence of Repeated Richardson Extrapolation, . In: Nikolov Geno ; Georgiev Krassimir ; Datcheva Maria; Georgiev Ivan (szerk.) Numerical Methods and Applications : 10th International Conference, NMA 2022, Bo, 2023
T. Bayleyegn. I. Faragó, Á. Havasi: On the Consistency and Convergence of Classical Richardson Extrapolation as Applied to Explicit One-Step Methods, MATHEMATICAL MODELLING AND ANALYSIS 28 (2023) 42-52, 2023
T. Bayleyegn, I. Faragó, A. Havasi.: On the convergence of multipleRichardson extrapolation combined with explicit Runge–Kutta methods, Periodica Mathematica Hungarica (in press),, 2023
S. Filipov, I. Faragó, A. Avdzhieva: Mathematical modelling of nonlinearheat conduction with relaxing boundary conditions, In: Georgiev, I.,Datcheva, M., Georgiev, K., Nikolov, G. (eds) Numerical Methods andApplications. NMA 2022. Lecture Notes in Computer Science) 13858. 146—158, Springer, 2023
S. Filipov, J. Hristov, A. Avdzhieva , I. Faragó: A coupled PDE-ODE model for nonlinear transient heat transfer with convection heating at theboundary: Numerical solution by implicit time discretization, Axioms, 12 4 (2023) 323,, 2023
Axelsson Owe, Karátson János, Magoulès Frédéric: Robust Superlinear Krylov Convergence for Complex Noncoercive Compact-Equivalent Operator Preconditioners, JOURNAL ON NUMERICAL ANALYSIS 61 : 2 pp. 1057-1079. , 23 p., 2023
Castillo, Sebastian J.; Karátson János: Rates of robust superlinear convergence of preconditioned Krylov methods for elliptic FEM problems, Numerical Algorithms, 2023
Karátson János, Stanislav Sysala, Michal Béres: Quasi-Newton variable preconditioning for nonlinear elasticity systems in 3D, Numerical Linear Algebra with Applications (in press), 2023
I. Fekete, L. Lóczi: Linear multistep methods and global Richardson extrapolation,, Appl. Math. Lett., 108267 (2022), 2022
S. Barua, M. A. Ibrahim, A. Dénes: A compartmental model for the spread of Nipah virus in a periodic environment, AIMS Math. (in press), 2023
Barua, B. Das, A. Dénes: A compartmental model for COVID-19 to assess effects of non-pharmaceutical interven- tions with emphasis on contact-based quarantine, Studia Univ. Babes,–Bolyai Math. 68(2023), 679–697., 2023
S. Barua, A. Dénes: Global dynamics of a compartmental model for the spread of Nipah virus, Heliyon 9, No. 9, e19682, 2023
S. Barua, A. Dénes: Global dynamics of a compartmental model to assess the effect of transmission from deceased, Math. Biosci. Eng. 364(2023), 109059., 2023
M. A. Ibrahim, A. Dénes: Mathematical modeling of SARS-CoV-2 transmission between minks and humans considering new variants and mink culling, Trop. Med. Infect. Dis. 8(2023), 39., 2023
M. A. Ibrahim, A. Dénes: Stability and threshold dynamics in a seasonal mathematical model for measles outbreaks with double-dose vaccination, Mathematics 11(2023), 1791, 2023
M. A. Ibrahim, A. Dénes: A mathematical model for Zika virus infection and microcephaly risk considering sexual and vertical transmission, Axioms 12(2023), 263, 2023
M. Kiss: Spectral Determinants and an Ambarzumian Type Theorem on Graphs, INTEGRAL EQUATIONS AND OPERATOR THEORY 92 : 3 Paper: 24, 2020
M. E. Mincsovics: Note on Weakly and Strongly Stable Linear Multistep Methods, HPC 2019: Advances in High Performance Computing, Springer pp 290-297, 2020
M. E. Mincsovics: Discrete C^1 convergence of linear multistep methods, Journal of Computational and Applied Mathematics, Volume 363, pp 234-240, 2020
P. Csomós, B. Takács: Operator splitting for space-dependent epidemic model,, Applied Numerical Mathematics, 159 (2021) 259–280, 2021
Bayleyegn, T., Havasi, Á.: Multiple Richardson extrapolation and its combination with the implicit Euler method, Annales Univ. Sci. Budapest., Sect. Math., 63, pp. 101-121., 2020
Zlatev Z., Dimov I., Faragó I., Georgiev K., Havasi, Á.: Efficient implementation of advanced Richardson Extrapolation in an atmospheric chemical scheme, Journal of Mathematical Chemistry (online) DOI: 10.1007/s10910-021-01300-z, 2021
M. Kiss: An Ambarzumian type theorem on graphs with odd cycles, Ukrainian Mathematical Journal (to appear), 2021
Karátson, J ; Kovács, B ; Korotov, S: Discrete maximum principles for nonlinear elliptic finite element problems on surfaces with boundary, IMA JOURNAL OF NUMERICAL ANALYSIS, 2019
Owe Axelsson , Maya Neytcheva, János Karátson: Preconditioned iterative solution methods for linear systems arising in PDE-constrained optimization, : Robust and Constrained Optimization: Methods and Applications (ISBN 978-1-53614-835-0),, 2018
László Simon: Multiple solutions of nonlinear elliptic functional differential equations,, Electronic Journal of Qualitative Theory of Differential Equations, 2018
I. Faragó, R. Horváth: Qualitative properties of some discrete models of disease propagation, JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018
József, Csóka ; István, Faragó ; Róbert, Horváth ; János, Karátson ; Sergey, Korotov: Qualitative properties of nonlinear parabolic operators II.: the case of PDE systems, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 468 64-86, 2018
Bálint, Takács, Róbert Horváth, István Faragó: The effect of tree diffusion in a two-dimensional continuous model for Easter Island, EUROPEAN JOURNAL OF MATHEMATICS (to appear), 2019
A. Dénes, G. Röst: Dynamics of an infectious disease including ectoparasites, rodents and humans, Trends in Biomathematics: Modeling, Optimization and Computational Problems (ed. R. Mondaini), Springer, 2018, pp. 59–73, 2018
A. Dénes, L. Székely: Small solutions of the damped half-linear oscillator with step function coefficients, Electronic Journal of Qualitative Theory of Differential Equations, 2018
I. Faragó, M. Mincsovics, R. Mosleh: Reliable numerical modelling of malaria propagation, APPLICATIONS OF MATHEMATICS, 2018
M. V. Barbarossa, M. Polner, G. Röst,: Temporal evolution of immunity distributions in a population with waning and boosting, COMPLEXITY, 2018
Mónika Polner, Sándor Varró, Anett Vörös-Kiss: Scattering of ultrashort electromagnetic pulses on a system of two parallel current sheets, Kvantumelektronika 2018: VIII. Szimpózium a hazai kvantumelektronikai kutatások eredményeiről, 2018
P. Csomós, H. Mena: Fourier-Splitting method for solving hyperbolic LQR problems, Numerical Algebra, Control and Optimization, 2018
István Faragó, Gabriella Svantnerné Sebestyén: Operator splitting methods for the Lotka–Volterra equations, Electronic Journal of Qualitative Theory of Differential Equations, 2018
S. Filipov, I. Faragó: Implicit Euler time discretization and FDM with Newton method in nonlinear heat transfer modelling, Mathematical Modeling (to appear), 2018
Karátson, J ; Kovács, B ; Korotov, S: Discrete maximum principles for nonlinear elliptic finite element problems on surfaces with boundary, IMA JOURNAL OF NUMERICAL ANALYSIS, 2019
Bálint, Takács, Róbert Horváth, István Faragó: The effect of tree diffusion in a two-dimensional continuous model for Easter Island, European Journal of Mathematics 5 (2019) 845-857., 2019
S. Filipov, I. Faragó: Implicit Euler time discretization and FDM with Newton method in nonlinear heat transfer modelling, Mathematical Modeling 2 (2018) 94-98., 2018
Axelsson, Owe ; Neytcheva, Maya ; Karátson, János: Preconditioned Iterative Solution Methods for Linear Systems Arising in PDE-Constrained Optimization, In: Dewey, Clark (szerk.) Robust and Constrained Optimization : Methods and Applications Hauppauge (NY), Amerikai Egyesült Államok : Nova Science Publishers, (2019) pp. 8, 2019
Borsos, B. ; Karatson, J.: Variable preconditioning for strongly nonlinear elliptic problems, Journal of Computational and Appliked Mathematics V350 pp. 155-164 (2019), 2019
Horváth, R. ; Faragó, I. ; Karátson, J.: Qualitative properties of discrete nonlinear parabolic operators, NUMERISCHE MATHEMATIK 143 : 3 pp. 529-553. , 27 p. (2019), 2019
Karátson, J.: Sobolev gradient preconditioning for elliptic reaction–diffusion problems with some nonsmooth nonlinearities, JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 363 pp. 223-233. (2019), 2019
I. Faragó, S. Filipov, I. Gospodinov: Replacing the finite difference methods for nonlinear two-point boundary value problems by successive application of the linear shooting method, Journal of Computational and Applied Mathematics, 358 (2019) 46-60., 2019
I. Faragó, D. Repovs: Eigenvalue problems with unbalanced growth: nonlinear patterns and standing wave solutions, Nonlinear Analysis 188 (2019) 377-388., 2019
Z. Zlatev, I. Dimov,, I. Faragó, K. Georgiev, A. Havasi.: Explicit Runge-Kutta methods combined with advanced versions of the Richardson extrapolation, Computational Methods in Applied Mathematics (2019) https://doi.org/10.1515/cmam-2019-001, 2019
B. Takács, R. Horváth, I. Faragó.: The SIR model with non-symmetric spatial dependence,, Computers & Mathematics with Applications, (2019) https://doi.org/10.1016/j.camwa.2019.07.001. (published online), 2019
Z. Zlatev, I. Dimov, I. Faragó, K. Georgiev,A. Havasi: Large-scale air pollution modelling in Europe under different climatic scenarios,, Int. J. of Big Data Mining for Global Warming (2019) (accepted), 2019
Z. Zlatev, I.Dimov, I. Faragó, K. Georgiev, A. Havasi: Absolute stability and implementation of the two-times repeated Richardson extrapolation together with explicit Runge-Kutta methods., Lecture Notes in Computer Science, Springer, Volume 11386 (2019) 678-686., 2019
Z. Zlatev, I.Dimov, I. Faragó, K. Georgiev, A. Havasi.: Stability properties of repeated Richardson extrapolation applied together with some implicit Runge-Kutta methods, Lecture Notes in Computer Science, Springer, Volume 11386 (2019) 114-125., 2019
P. Csomós: Magnus-type integrator for semilinear delay equations with an application to epidemic models, Journal of Computational and Applied Mathematics 363 (2020) 92–105, 2020
L. Simon,: Multiple solutions of nonlinear partial functional differential equations and systems,, Electron. J. Qual. Theory Differ. Equ. 2019. No. 21, 1-16., 2019
R. Horváth: On some discrete qualitative properties of implicit finite difference solutions of nonlinear parabolic problems, JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 364 Paper: 112330, 2020
E. Bánhegyi, A. Dénes, J. Karsai, L. Székely: The efect of the needle exchange program on the spread of some sexually transmitted diseases, Math. Biosci. Eng. 16(2019), No. 5, 4506–4525., 2019
Karátson, J ; Kovács, B ; Korotov, S: Discrete maximum principles for nonlinear elliptic finite element problems on surfaces with boundary, IMA JOURNAL OF NUMERICAL ANALYSIS 40(2), pp. 1241-1265 (2020), 2020
Karátson, J.: Sobolev gradient preconditioning for elliptic reaction–diffusion problems with some nonsmooth nonlinearities, JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 363 pp. 223-233 (2020), 2020
Z. Zlatev, I. Dimov, I. Faragó, K. Georgiev, A. Havasi: Large-scale air pollution modelling in Europe under different climatic scenarios,, Int. J. of Big Data Mining for Global Warming, 2019
R. Horváth: On some discrete qualitative properties of implicit finite difference solutions of nonlinear parabolic problems, JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 364 Paper: 112330, 2020
I. Faragó, F. Izsák, P. Simon (editors): Progress in Industrial Mathematics at ECMI 2018, 20th European Conference on Mathematics for Industry, ECMI 2018, Budapest Hungary, June 18-22, 2018, Revised Selected Pap, Springer, 2019
I. Faragó, Á. Havasi. Z. Zlatev: Richardson extrapolation for space-time discretization methods with application to the advection equation, Időjárás, 123 (2019) 135-146., 2019
B. Takács, R. Horváth, I. Faragó.: Space dependent models for studying the spread of some diseases, Computers & Mathematics with Applications, 80 (2020) 395–404., 2020
M. Cencelj, I. Farago, R. Horvath, D. Repovs: On nonlinear Schrödinger equations on the hyperbolic space, Journal of Mathematical Analysis and Applications, 2020
I. Farago, S. Filipov.: The linearization method as a basis to derive the relaxation and shooting methods, „A closer look at boundary-value problems”, edited by M. Avci, Series:Theoretical and Applied Mathematics, Nova Science Publisher, New York, Ch.5, (2020) 183-210, 2020
I. Faragó, F. Dorner: Two epidemic propagation models and their properties, Studies in Computational Intelligence, 2020
I. Farago, S. Filipov, A. Avdzhieva, G. Sebestyén: A numerical approching to solving unsteady one dimensiőnal nonlinear diffusion equations, „A Closer Look at the Diffusion Equation”, edited by J. Hristov, Series: Mathematics Research Developments, Nova Science Publisher, New York, Ch.1, (2020), 2020
L. Simon: On qualitative behavior of multiple solutions of quasilinear parabolic functional equations, Electronic Journal of Qualitative Theory of Differential Equations, 2020
Sz. Beretka, G. Vas.: Saddle-node bifurcation of periodic orbits for a delay differential equation, J. Differential Equations 269 (2020), no. 5, 4215–4252, 2020
É. Muqbel, G. Vas, G. Röst: Periodic orbits and global stability for a discontinuous SIR model with delayed control, Qual. Theory Dyn. Syst. 19 (2020), no. 2, 2020
Sz. Beretka, G. Vas: Stable periodic solutions for Nazarenko's equation, Communications on Pure & Applied Analysis 19 (2020), no. 6, 3257–3281., 2020
Zlatev, Z., Dimov, I., Faragó, I., Georgiev, K., Havasi, Á..: Studying the Influence of Climate Changes on European Ozone Levels, Large-Scale Scientific Computing. Springer International Publishing, Cham, pp. 391-399., 2020
O. Axelsson, J. Karátson: Superior properties of the PRESB preconditioner for operators on two-by-two block form with square blocks, NUMERISCHE MATHEMATIK, 146, pp. 335–368 (2020), 2020
P. Csomós, B. Takács: Operator splitting for space-dependent epidemic model,, Applied Numerical Mathematics, 159 (2021) 259–280, 2021
A. Dénes, G. Röst,: Global analysis of a cancer model with drug resistance due to microvesicle transfer, R. P. Mondaini (Ed.),Trends in biomathematics: modeling cells, flows, epidemics, and the environment, Springer, Cham, 2020, pp. 71–80., 2020
G. Röst, F. A. Bartha, N. Bogya, P. Boldog, A. Dénes, T. Ferenci, K. J. Horváth, A. Juhász, Cs. Nagy, T. Tekeli, Zs. Vizi, B. Oroszi,: Early phase of the COVID-19 outbreak in Hungary and post-lockdown scenarios, Viruses, 12(2020) No. 7, 708., 2020
A. Dénes, Y. Muroya, G. Röst: Global stability of a multistrain SIS model with superinfection and patch structure, Math. Methods Appl. Sci. 43(2020), 9671–9680, 2020
P. Boldog, T. Tekeli, Zs. Vizi, A. Dénes, F. A. Bartha, G. Röst: Risk assessment of novel coronavirus COVID-19 outbreaks outside China, J. Clin. Med. 9(2020), No. 571, 12 pp, 2020





 

Events of the project

 
2019-06-08 15:33:21
Résztvevők változása
2017-12-21 07:59:08
Résztvevők változása




Back »