 |
Here you can view and search the projects funded by NKFI since 2004
Back »



|
 |
List of publications |
|
|
Opoku-Sarkodie, Richmond; Bartha, Ferenc A.; Polner, Mónika; Röst, Gergely: Dynamics of an SIRWS model with waning of immunity and varying immune boosting period, J. Biol. Dyn. 16 (2022), no. 1, 596–618., 2022 | Opoku-Sarkodie, R.; Bartha, F. A.; Polner, M.; Röst, G.: Bifurcation analysis of waning-boosting epidemiological models with repeat infections and varying immunity periods, Math. Comput. Simulation 218 (2024), 624–643., 2024 | Spek, Len; van Gils, Stephan A.; Kuznetsov, Yuri A.; Polner, Mónika: Hopf bifurcations of two population neural fields on the sphere with diffusion and distributed delays, SIAM J. Appl. Dyn. Syst. 23 (2024), no. 3, 1909–1945., 2024 | Gábor Benedek, Tibor Krisztin, Robert Szczelina: Stable Periodic Orbits for Delay Differential Equations with Unimodal Feedback, Journal of Dynamics and Differential Equations, 10 December 2024, online, 2024 | Ferenc A. Bartha, Ábel Garab, Tibor Krisztin: Morse Decomposition of Scalar Differential Equations with State-Dependent Delay, Journal of Dynamics and Differential Equations. Published: 27 February 2025, online, 2025 | Bartha, Ferenc A.; Krisztin, Tibor; Vígh, Alexandra,: Stable periodic orbits for the Mackey–Glass equation., J. Differential Equations 296 (2021), 15–49., 2021 | I. Balázs, P. Getto, G. Röst: A continuous semiflow on a space of Lipschitz functions for adifferential equation with state-dependent delay from cell biology, J. Differential Equations, accepted, 2021 | I. Balázs, P. Getto, G. Röst: A continuous semiflow on a space of Lipschitz functions for adifferential equation with state-dependent delay from cell biology, J. Differential Equations, 304 (2021), 73–101., 2021 | Spek, L.; Dijkstra, K.; van Gils, S.A.; Polner, M.: Dynamics of delayed neural field models in two-dimensional spatial domains, Journal of Differential Equations 317 (2022), 439-473., 2022 | Opoku-Sarkodie, R.; Bartha, F.A.; Polner, M.; Röst, G.: Dynamics of an SIRWS model with waning of immunity and varying immune boosting period, Journal of Biological Dynamics 16 (2022), 596-618., 2022 | Tibor Krisztin, Hans-Otto Walther: Solution manifolds of differential systems with discrete state-dependent delays are almost graphs, Discrete Contin. Dyn. Syst. 43 (2023), no. 8, 2973–2984., 2023 | I. Balázs, P. Getto, G. Röst: A continuous semiflow on a space of Lipschitz functions for adifferential equation with state-dependent delay from cell biology, J. Differential Equations, 304 (2021), 73–101., 2021 | István Balázs, Tibor Krisztin: Global stability for price models with delay, J. Dyn. Diff. Equat. 31 (2019) 1327–1339., 2019 | István Balázs, Tibor Krisztin: A Differential equation with a state-dependent queueing delay, benyújtva, 2019 | Szandra Beretka, Gabriella Vas: Saddle-node bifurcation of periodic orbits for a delay differential equation, benyújtva, 2019 | Szandra Beretka, Gabriella Vas: Stable periodic solutions for Nazarenko's equation, benyújtva, 2019 | István Balázs, Tibor Krisztin: A differential equation with a state-dependent queueing delay, SIAM J. Math. Anal. 52-4 (2020), pp. 3697-3737, 2020 | Szandra Beretka, Gabriella Vas: Saddle-node bifurcation of periodic orbits for a delay differential equation, J. Differential Equations 269 (2020), no. 5, 4215–4252., 2020 | Szandra Beretka, Gabriella Vas: Stable periodic solutions for Nazarenko's equation, Communications on Pure & Applied Analysis 19 (2020), no. 6, 3257–3281., 2020 | István Balázs, Gergely Röst: Hopf bifurcation for Wright-type delay differential equations: The simplest formula, period estimates, and the absence of folds, Communications in Nonlinear Science and Numerical Simulation, Volume 84, 105188 (2020), 2020 | Muqbel, Khalil; Vas, Gabriella; Röst, Gergely: Periodic orbits and global stability for a discontinuous SIR model with delayed control, Qual. Theory Dyn. Syst. 19 (2020), no. 2, Paper No. 59, 27 pp., 2020 | K. Dijkstra, M. Polner, L. Spek, S. A. van Gils: Dynamics of delayed neural field models in two-dimensional spatial domains, submitted, 2020 | J. Dudás, T. Krisztin,: Global stability for the 3-dimensional logistic map, submitted, 2020 | I. Balázs, P. Getto, G. Röst: A continuous semiflow on a space of Lipschitz functions for a differential equation with state-dependent delay from cell biology, submitted, 2020 | I. Balázs, G. Röst: Hopf bifurcations in Nicholson's blowfly equation are always supercritical., submitted, 2020 | J. Dudás, T. Krisztin,: Global stability for the 3-dimensional logistic map, Nonlinearity 34 (2021), no. 2, 894–938., 2021 | Krisztin, Tibor: Periodic solutions with long period for the Mackey–Glass equation, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 83, 12 pp., 2021 | I. Balázs, G. Röst: Hopf bifurcations in Nicholson's blowfly equation are always supercritical., International Journal of Bifurcation and Chaos, 31(05), 2150071 (2021), 2021 | Balázs István, Krisztin Tibor: A Differential Equation with a State-Dependent Queueing Delay, SIAM JOURNAL ON MATHEMATICAL ANALYSIS 52: (4) pp. 3697-3737., 2020 |

|
|
|

|

|

|

Back »
|
 |
|