 |
Here you can view and search the projects funded by NKFI since 2004
Back »



|
 |
List of publications |
|
|
Hegyvári, N., Hennecart, F., Pach, P. P.: On the density of sumsets and product sets, Australasian Journal of Combinatorics, 74 (1) 1-16., 2019 | Caicedo, A. E., Chartier, T. A. C., Pach, P. P.: Coloring the n-smooth numbers with n colors, https://arxiv.org/pdf/1902.00446.pdf, preprint, 2020 | Elsholtz, C., Pach, P. P: Caps and progression-free sets in Z_m^n, https://arxiv.org/pdf/1903.08266.pdf, preprint, 2020 | N. Hegyvári, M. Pálfy: Note on a result of Shparlinski and related results, Acta Arith. , megjelenés alatt, 2019 | Csaba Sándor, Xing-Wang Jiang, Quan-Hui Yang: On the values of additive representation functions II, https://arxiv.org/abs/1904.10352, preprint, 2020 | Csaba Sándor, Sándor Z. Kiss: Generalized asymptotic Sidon Basis, https://arxiv.org/abs/1909.01714, preprint, 2020 | Sándor Kiss, Csaba Sándor, Yang Quan-Hui: On minimal additive complements of integers, Journal of Combinatorial Theory Ser. A, 162, 344-353., 2019 | S. Kiss, Cs. Sándor: Generalization of some results about the regularity properties of an additive representation function, Acta Mathematica Hungarica, 157, 121-140., 2019 | S. Kiss, Cs. Sándor: On the structure of sets which have coinciding representation functions, INTEGERS, megjelenés alatt, 2020 | S. Kiss, P. Kutas: An identification system based on the explicit isomorphism problem, https://arxiv.org/abs/1812.09130, preprint, 2020 | N. Lev, M. Matolcsi: The Fuglede conjecture for convex domains is true in all dimensions, https://arxiv.org/abs/1904.12262, preprint, 2020 | G. Ambrus, M. Matolcsi: On the density of planar sets without unit distances, https://arxiv.org/abs/1809.05453, preprint, 2020 | An analytic approach to the cardinalities of sumsets: D. Matolcsi, I. Z. Ruzsa, G. Shakan, D., Zhelezov, preprint, 2020 | Elsholtz, C., Pach, P. P: Caps and progression-free sets in Z_m^n, Designs, Codes, and Cryptography, to appear (DOI: 10.1007/s10623-020-00769-0), 2020 | N. Hegyvári, M. Pálfy: Note on a result of Shparlinski and related results, ACTA ARITHMETICA 193 : 2 pp. 157-163. , 7 p. (2020), 2020 | D. Matolcsi, I. Z. Ruzsa, G. Shakan, D., Zhelezov: An analytic approach to the cardinalities of sumsets, preprint, https://arxiv.org/abs/2003.04075, 2020 | Máté Matolcsi, Imre Z. Ruzsa: Difference sets and positive exponential sums II: cubic residues in cyclic groups, preprint submitted for publication, 2020 | Sandor Kiss, Vinh Hung Nguyen: On asymptotic basis which have distinct subset sums, preprint submitted for publication, 2020 | Imre Ruzsa, József Solymosi: Sumsets of Semiconvex sets, preprint, https://arxiv.org/abs/2008.08021, 2020 | Noga Alon, Imre Ruzsa, József Solymosi: On sums and products along the edges II, preprint, https://arxiv.org/abs/2007.12970, 2020 | Norbert, Hegyvári: On uncertainty inequalities related to subcube partitions and additive energy, preprint, https://arxiv.org/abs/2009.10127, 2020 | N. Hegyvári: Recent progress in Hilbert cubes theory, Proceedings of CANT 2020 (Springer), to appear, 2020 | Hegyvári, N., Pach, P. P.: Hilbert cubes meet arithmetic sets, Journal of Number Theory, 217, 292-300., 2020 | Pach, P. P., Palincza, R.: Sets avoiding six-term arithmetic progressions in Z_6^n are exponentially small, preprint, https://arxiv.org/abs/2009.11897, 2020 | B, Bakos ; N, Hegyvári ; M, Pálfy ; XH, Yan: On subset sums of pseudo–recursive sequences, Discrete Mathematics Letters (4) pp. 21-36., 2020 | Frank Coen, Nate Gillman, Tamás Keleti, Dylan King, Jennifer Zhu: Large Sets with Small Injective Projections, https://arxiv.org/abs/1906.06288, 2020 | Xing-Wang Jiang, Csaba Sándor, Quan-Hui Yang: A note of the lower bound of representation functions, preprint, https://arxiv.org/abs/1911.01579, 2020 | Sándor Z. Kiss, Csaba Sándor: Generalized Sidon sets of perfect powers, preprint, https://arxiv.org/abs/2006.02783, 2020 | Caicedo, A. E., Chartier, T. A. C., Pach, P. P.: Coloring the n-smooth numbers with n colors, Electronic Journal of Combinatorics, 28 (1) (2021) Article Number P1.34, 79 pp., 2021 | Elsholtz, C., Pach, P. P: Caps and progression-free sets in Z_m^n, Designs, Codes, and Cryptography, 88 (2020) 2133-2170., 2020 | Csaba Sándor, Xing-Wang Jiang, Quan-Hui Yang: On the values of additive representation functions II, J. Number Theory 218 (2021), 288-301., 2021 | Csaba Sándor, Sándor Z. Kiss: Generalized asymptotic Sidon Basis, Discrete Mathematics 344 (2021), no. 2, Paper No. 112208, 5 pp., 2021 | S. Kiss, Cs. Sándor: On the structure of sets which have coinciding representation functions, Integers 19 (2019), Paper No. A66, 29 pp., 2019 | S. Kiss, P. Kutas: An identification system based on the explicit isomorphism problem, Applicable Algebra in Engineering, Communication and Computing, közlésre elfogadva., 2021 | N. Lev, M. Matolcsi: The Fuglede conjecture for convex domains is true in all dimensions, Acta Mathematica, elfogadva, 2021 | G. Ambrus, M. Matolcsi: Estimates of 1-Avoiding Sets via Higher Order Correlations, Discrete Comput Geom (2020). https://doi.org/10.1007/s00454-020-00263-3, 2020 | D. Matolcsi, I. Z. Ruzsa, G. Shakan, D., Zhelezov: An analytic approach to the cardinalities of sumsets, Combinatoric, elfogadva, 2021 | Máté Matolcsi, Imre Z. Ruzsa: Difference sets and positive exponential sums II: cubic residues in cyclic groups, Proceedings of the Steklov Institute of Mathematics, 314(1), 138-143, 2021 | Sandor Kiss, Vinh Hung Nguyen: On asymptotic basis which have distinct subset sums, Bulletin of the Australian Math. Soc., 104 (2021), no. 2, 211–217., 2021 | N. Hegyvári: Recent progress in Hilbert cubes theory, In: Nathanson, Melvyn B. (szerk.) Combinatorial and Additive Number Theory IV Cham, Svájc : Springer International Publishing (2021) pp. 283-290., 2021 | Frank Coen, Nate Gillman, Tamás Keleti, Dylan King, Jennifer Zhu: Large Sets with Small Injective Projections, Annales Fennici Mathematici, 46(2), 683–702., 2021 | Xing-Wang Jiang, Csaba Sándor, Quan-Hui Yang: A note of the lower bound of representation functions, Int. J. Number Theory 17 (2021), 2243-2250., 2021 | N. Hegyvári: On uncertainty inequality related to influence of Boolean function and additive energy, közlésre benyújtva, 2021 | B.Bakos, N. Hegyvári, M. Pálfy: On a Communication Complexity problem in Combinatorial Number Theory, közlésre benyújtva, 2021 | Bursics, B., Matolcsi, D., Pach, P. P., Schrettner, J.: Avoiding right angles and certain Hamming distances, https://arxiv.org/pdf/2012.08232.pdf, preprint, 2021 | Lev, V. F., Nagy, J., Pach, P. P.: Sum-full sets are not zero-sum-free, Linear Algebra and its Applications 625 (2021) 241-247., 2021 | Nagy, J., Pach, P. P.: The Alon-Jaeger-Tarsi conjecture via group ring identities, https://arxiv.org/pdf/2107.03956.pdf, preprint, 2021 | Tamás Keleti, James Cumberbatch, Jialin Zhang: Hausdorff dimension of union of lines that cover a curve, https://arxiv.org/abs/2107.07995, preprint, 2021 | Cs. Sandor: Additive representation functions and discrete convolutions, https://arxiv.org/abs/2009.03392, 2021 | Sándor Z. Kiss, Csaba Sándor: On a problem of Chen and Fang related to infinite additive complements, Acta Arithmetica, 200(2) (2021), 213-220., 2021 | Sándor Z. Kiss, Éva Hosszu, János Tapolcai, Lajos Rónyai, Ori Rottenstreich: Bloom Filter with a False Positive Free Zone, IEEE Transactions on Network and Service Management, (2021) 18 (2)., pp. 2334-2349., 2021 | Sándor Z. Kiss, Csaba Sándor: Dense sumsets of Sidon sequences, kézirat, benyújtva, https://arxiv.org/abs/2103.10349, 2021 | N. Lev, M. Matolcsi: The Fuglede conjecture for convex domains is true in all dimensions, Acta Mathematica 228 (2022), no. 2, 385-420., 2022 | G. Ambrus, M. Matolcsi: Estimates of 1-Avoiding Sets via Higher Order Correlations, Discrete & Computational Geometry 67, 1245–1256 (2022), 2022 | D. Matolcsi, I. Z. Ruzsa, G. Shakan, D., Zhelezov: An analytic approach to the cardinalities of sumsets, Combinatorica, volume 42, pages 203–236 (2022), 2022 | Imre Ruzsa, József Solymosi: Sumsets of Semiconvex sets, Sumsets of semiconvex sets. Canadian Mathematical Bulletin, (2022), 65(1), 84-94., 2022 | Pach, P. P., Palincza, R.: Sets avoiding six-term arithmetic progressions in Z_6^n are exponentially small, SIAM Journal on Discrete Mathematics 36 (2) (2022) 1135-1142., 2022 | Sándor Z. Kiss, Csaba Sándor: Generalized Sidon sets of perfect powers, The Ramanujan Journal, 59 (2022), 351-363, 2022 | N. Hegyvári: On a Boolean function defined on Number Theoretical structures, In: Csuhaj-Varjú, Erzsébet; Sziklai, Péter (eds.) Proceedings of the Conference on Developments in Computer Science, ELTE Faculty of Informatics (2021) pp. 27-30, 2021 | B.Bakos, N. Hegyvári, M. Pálfy: On a Communication Complexity problem in Combinatorial Number Theory, MOSCOW JOURNAL OF COMBINATORICS AND NUMBER THEORY 10 : 4 pp. 297-302., 2022 | Cs. Sandor: Additive representation functions and discrete convolutions, Acta Math. Hungar. 166 (2022), no. 2, 217-238., 2022 | Sándor Z. Kiss, Csaba Sándor: Dense sumsets of Sidon sequences, European Journal of Combinatorics, 107 (2023), 103600, megjelenés alatt., 2022 | K. Héra, T. Keleti, A. Máthé: A Fubini-type theorem for Hausdorff dimension, Journal d'Analyse Mathematique (megjelenés alatt), 2022 | Tamás Keleti, Stephen Lacina, Changshuo Liu, Mengzhen Liu, José Ramón Tuirán Rangel: Tiling of rectangles with squares via Diophantine approximation, https://arxiv.org/abs/2201.11545 (közlésre benyújtva), 2022 | Márton Elekes, Boglárka Gehér, Tamás Kátay, Tamás Keleti, Anett Kocsis, Máté Pálfy: Generic properties of topological groups, https://arxiv.org/abs/2210.03034 (közlésre benyújtva), 2022 | Nagy, J., Pach, P. P.: A Counterexample to the Lights Out Problem, Journal of Graph Theory 101 (2), 265-273., 2022 | Bajnok, B., Pach, P. P.: On sumsets of nonbases of maximum size, http://cs.bme.hu/~ppp/publications/On_sumsets.pdf (közlésre benyújtva), 2022 | Baja, Zs., Dobák, D., Kovács, B., Pach, P. P., Pigler, D.: Towards characterizing the 2-Ramsey equations of the form ax+by=p(z), https://arxiv.org/pdf/2209.09334.pdf (közlésre benyújtva), 2022 | Pach, P. P.: Bounds on the size of progression-free sets in Z_m^n, Unif. Distrib. Theory 17 (2022) no.1, 1-10., 2022 | Sándor Z. Kiss, Csaba Sándor: On Bh[1]-sets which are asymptotic bases of order 2h, https://arxiv.org/abs/2202.13841, (közlésre benyújtva), 2022 | Jiao, K.-J., Sándor, C., Yang, Q.-H., Zhou, J-Y.: On integer sets with the same representation functions, Bull. Aust. Math. Soc. 106 (2022), no. 2, 224-235., 2022 | Kocsis, A., Matolcsi, D. Sándor, C., Tőtős, G.: Multiplicative complements I., https://arxiv.org/abs/2204.00412 (közlésre benyújtva), 2022 | Fang, J.-H., Sándor, C.: On sets with sum and difference structure, https://arxiv.org/abs/2205.06553 (közlésre benyújtva), 2022 | Fang, J.-H., Sándor, C.: On disjoint sets, https://arxiv.org/abs/2208.11357 (közlésre benyújtva), 2022 | Fang, J.-H., Sándor, C.: Additive completition of thin sets, https://arxiv.org/abs/2209.08509 (közlésre benyújtva), 2022 | Imre Z Ruzsa: Additive decomposition of signed primes, Acta Arithmetica (megjelenés alatt), 2022 | M. Matolcsi, M. Weiner: A rigidity property of complete systems of mutually unbiased bases, Open Systems & Information Dynamics, Vol. 28, No. 03, 2150012 (2021), 2021 | Gergely Ambrus, Adrián Csiszárik, Máté Matolcsi, Dániel Varga, Pál Zsámboki: The density of planar sets avoiding unit distances, https://arxiv.org/abs/2207.14179 (közlésre benyújtva), 2022 | Mihail N. Kolountzakis, Nir Lev, Máté Matolcsi: Spectral sets and weak tiling, https://arxiv.org/abs/2209.04540 (közlésre benyújtva), 2022 | S. Kiss, P. Kutas: An identification system based on the explicit isomorphism problem, Applicable Algebra in Engineering, Communication and Computing, 2021, 1-18., 2021 | Bursics, B., Matolcsi, D., Pach, P. P., Schrettner, J.: Avoiding right angles and certain Hamming distances, Linear Algebra and its Applications 677 (2023) 71-87., 2023 | Tamás Keleti, James Cumberbatch, Jialin Zhang: Hausdorff dimension of union of lines that cover a curve, to appear in Pure and Applied Functional Analysis, 2023 | Sándor Z. Kiss, Csaba Sándor: Dense sumsets of Sidon sequences, European Journal of Combinatorics, 107 (2023), 103600, 2023 | K. Héra, T. Keleti, A. Máthé: A Fubini-type theorem for Hausdorff dimension, JOURNAL D’ANALYSE MATHEMATIQUE, Vol. TBD (2023), DOI 10.1007/s11854-023-0302-3, 2023 | Tamás Keleti, Stephen Lacina, Changshuo Liu, Mengzhen Liu, José Ramón Tuirán Rangel: Tiling of rectangles with squares via Diophantine approximation, Discrete Mathematics 346 (2023), 113442, 2023 | Bajnok, B., Pach, P. P.: On sumsets of nonbases of maximum size, European Journal of Combinatorics, DOI: 10.1016/j.ejc.2023.103835, 2023 | Baja, Zs., Dobák, D., Kovács, B., Pach, P. P., Pigler, D.: Towards characterizing the 2-Ramsey equations of the form ax+by=p(z), Discrete Mathematics 346 (5) (2023) 113324, 2023 | Kocsis, A., Matolcsi, D. Sándor, C., Tőtős, G.: Multiplicative complements I., Acta Arith. 207 (2023), 101-120., 2023 | Imre Z Ruzsa: Additive decomposition of signed primes, Acta Arithmetica DOI: 10.4064/aa220429-17-11 Published online: 26 January 2023, 2023 | Gergely Ambrus, Adrián Csiszárik, Máté Matolcsi, Dániel Varga, Pál Zsámboki: The density of planar sets avoiding unit distances, Mathematical Programming, DOIhttps://doi.org/10.1007/s10107-023-02012-9, 2023 | Mihail N. Kolountzakis, Nir Lev, Máté Matolcsi: Spectral sets and weak tiling, to appear, Sampling Theory, Signal Processing, and Data Analysis, 2023 | Nagy, J., Pach, P. P., Tomon, I.: Additive bases, coset covers, and non-vanishing linear maps, preprint: arXiv: 2111.13658, 2023 | Král, D., Lamaison, A., Pach, P. P.:: Common systems of two equations over the binary field, in: L. F. Tabera Alonso (ed.): Discrete Mathematics Days 2022, Editorial Universidad de Cantabria, 2022, 169-173., 2022 | Elsholtz, C., Führer, J, Füredi, E., Kovács, B., Pach, P. P., Simon, D. G., Velich, N.: Maximal line-free sets in F_p^n, preprint: arXiv: 2310.03382, 2023 | S. Z. KISS, C. SÁNDOR, & Q. YANG: On monotone increasing representation functions, Bulletin of the Australian Mathematical Society, 1-10. doi:10.1017/S0004972723000679, 2023 | S. Z. Kiss, C. Sándor: Unique representations of integers by linear forms, preprint, arxiv: https://arxiv.org/abs/2303.09878, 2023 | Imre Z. Ruzsa: Large Subsums of the Möbius Function, in:Number Theory in Memory of Eduard Wirsing, Springer 2023 Pages 299-305, 2023 | Alex Burgin, Samuel Goldberg, Tamás Keleti, Connor MacMahon, Xianzhi Wang: Large sets avoiding infinite arithmetic / geometric progressions, to appear in Real Analysis Exchange, 2023 | T. Keleti and András Máthé: Equivalences between different forms of the Kakeya conjecture and duality of Hausdorff and packing dimensions for additive complements, preprint, arXiv:2203.15731., 2023 | Balka R., Keleti T.: Lipschitz images and dimensions, preprint, arXiv:2308.02639, 2023 | Kocsis A., Matolcsi D., Sándor Cs., Tőtős Gy.: Multiplicative complements II., preprint, arxiv: https://arxiv.org/abs/2305.03377, 2023 | Chen S-Q., Yang Q-H, Sándor Cs.: On a problem of Nathanson related to the minimal asymptotic bases of order h, preprint, https://arxiv.org/abs/2301.11148, 2023 | Bárány B., Fang J-H., Sándor Cs.: Lagrange-like spectrum of perfect additive complements, preprint, https://arxiv.org/abs/2301.04365, 2023 | Fang J-H, Sándor Cs.: On function SX of additive complements, preprint, https://arxiv.org/abs/2210.09680, 2023 | G. Kiss, D. Matolcsi, M. Matolcsi, G. Somlai: Tiling and weak tiling in (Z_p)^d, to appear, Sampling Theory, Signal Processing, and Data Analysis, 2023 | Norbert Hegyvári: On Boolean Functions Defined on Bracket Sequences, DISCRETE MATHEMATICS LETTERS 12 : 1 pp. 45-49. , 5 p. (2023), 2023 | Hegyvári, N.: Some Remarks on the Distribution of Additive Energy, Results Math 78, 233 (2023). https://doi.org/10.1007/s00025-023-02010-5, 2023 | Norbert, Hegyvári: On uncertainty inequalities related to subcube partitions and additive energy, INFORMATION PROCESSING LETTERS (0020-0190 1872-6119), 2022 | Nagy, J., Pach, P. P.: The Alon-Jaeger-Tarsi conjecture via group ring identities, https://arxiv.org/pdf/2107.03956.pdf, preprint, 2024 | Tamás Keleti, James Cumberbatch, Jialin Zhang: Hausdorff dimension of union of lines that cover a curve, Pure and Applied Functional Analysis Volume 8, Number 6, 1651-1659, 2023., 2023 | Bajnok, B., Pach, P. P.: On sumsets of nonbases of maximum size, European Journal of Combinatorics, Paper: 103835 (2024), DOI: 10.1016/j.ejc.2023.103835, 2024 | Sándor Z. Kiss, Csaba Sándor: On Bh[1]-sets which are asymptotic bases of order 2h, https://arxiv.org/abs/2202.13841, (közlésre benyújtva), 2024 | Fang, J.-H., Sándor, C.: On sets with sum and difference structure, https://arxiv.org/abs/2205.06553 (közlésre benyújtva), 2024 | Fang, J.-H., Sándor, C.: On disjoint sets, https://arxiv.org/abs/2208.11357 (közlésre benyújtva), 2024 | Fang, J.-H., Sándor, C.: Additive completion of thin sets, Bulletin of the Australian Mathematical Society, Volume 109, Issue 3, 2023 | Mihail N. Kolountzakis, Nir Lev, Máté Matolcsi: Spectral sets and weak tiling, Sampling Theory, Signal Processing, and Data Analysis 21 : 2 Paper: 31 (2023), 2023 | Nagy, J., Pach, P. P., Tomon, I.: Additive bases, coset covers, and non-vanishing linear maps, preprint, https://arxiv.org/abs/2111.13658, 2024 | Elsholtz, C., Führer, J, Füredi, E., Kovács, B., Pach, P. P., Simon, D. G., Velich, N.: Maximal line-free sets in F_p^n, preprint: arXiv: 2310.03382, 2024 | S. Z. KISS, C. SÁNDOR, & Q. YANG: On monotone increasing representation functions, Bull. Aust. Math. Soc. 109 (2024), no. 2, 196–205., 2024 | S. Z. Kiss, C. Sándor: Unique representations of integers by linear forms, preprint, arxiv: https://arxiv.org/abs/2303.09878, 2024 | Alex Burgin, Samuel Goldberg, Tamás Keleti, Connor MacMahon, Xianzhi Wang: Large sets avoiding infinite arithmetic / geometric progressions, Real Analysis Exchange 48 (2023), 351-364., 2023 | T. Keleti and András Máthé: Equivalences between different forms of the Kakeya conjecture and duality of Hausdorff and packing dimensions for additive complements, preprint, https://arxiv.org/abs/2203.15731, 2024 | Balka R., Keleti T.: Lipschitz images and dimensions, Advances in Mathematics Volume 446, June 2024, 109669, 2024 | Kocsis A., Matolcsi D., Sándor Cs., Tőtős Gy.: Multiplicative complements II., preprint, arxiv: https://arxiv.org/abs/2305.03377, 2024 | Chen S-Q., Yang Q-H, Sándor Cs.: On a problem of Nathanson related to the minimal asymptotic bases of order h, C. R. Math. Acad. Sci. Paris 362 (2024), 71–76., 2024 | Bárány B., Fang J-H., Sándor Cs.: Lagrange-like spectrum of perfect additive complements, Acta Arith 212 (2024), no. 3, 269--287, 2024 | Fang J-H, Sándor Cs.: On function SX of additive complements, preprint, https://arxiv.org/abs/2210.09680, 2024 | G. Kiss, D. Matolcsi, M. Matolcsi, G. Somlai: Tiling and weak tiling in (Z_p)^d, Sampling Theory, Signal Processing, and Data Analysis 22 : 1 Paper: 1 (2024), 2024 | N. Hegyvári: On arithmetic sums of Cantor-type sequences of integers, Discrete Applied Mathematics Volume 345, 15 March 2024, Pages 1-3, 2024 | M.Erdélyi, P.hegedüs, S.Z.Kiss, G.Nagy: On linear codes with random multiplier vectors and the maximum trace dimension property, Journal of Mathematical Cryptology, 2024; 18: 20230022., 2024 | Shi-Qiang Chen, Csaba Sandor, Quan-Hui Yang: Representation functions in the set of natural numbers, preprint, https://arxiv.org/pdf/2312.17098, 2024 | Richárd Balka, Tamas Keleti: New Hausdorff type dimensions and optimal bounds for bilipschitz invariant dimensions, preprint, https://arxiv.org/abs/2312.06456, 2024 |

|
|
|

|

|

|
 Back »
|
 |
|