ELTE-HAS Statistical and Biological Physics Research Group (Office for Research Groups Attached to Universities and Other Institutions)
Starting date
2002-01-01
Closing date
2005-12-31
Funding (in million HUF)
2.860
FTE (full time equivalent)
0.00
state
closed project
Final report
Results in Hungarian
Csapdázott Fermi-gázok egy nyílt héj modelljében algebrai és numerikus módszerrel határoztuk meg az alapállapot szerkezetét. Azt találtuk, hogy az alapállapot s-spinű fermionok esetén (2s+1) részecskéből álló fürtök (klaszterek) együttesével írható le, ha a részecskeszám (2s+1) többszöröse. Zérus hőmérsékletű csapdázott atomokra vizsgáltuk a részecskék kollektív gerjesztéseinek spektrumát a hidrodinamikai közelítésben. Numerikus eljárást adtunk tetszőleges kollektív gerjesztés meghatározására, amennyiben a gáz állapotegyenlete valamilyen mikroszkopikus modellből ismert. A módszerrel a hidrodinamikai közelítés módusai numerikusan egzaktul számolhatók. Meghatároztuk a csapdázott szuperfolyékony gáz kollektív gerjesztéseinek spektrumát a BCS határesettől a BEC határesetig a Feshbach-rezonancia tartományán is keresztülhaladva a lokális sűrűség modell alapján. Csapdázott, feles spinű rendszerek esetén a szuperfolyékony rendszer lokális sűrűség közelítését továbbfejlesztettük a sűrűség deriváltjait tartalmazó tagok kiszámításával és a bővített egyenletek megoldásával. A fellépő teljes elliptikus integrálok kezelésére kidolgozott analitikus és numerikus módszereink segített a Rashba-billiárdok állapotsűrűségének és szintstatisztikájának a vizsgálatában.
Results in English
In the one open-shell model for fermions we have calculated both analytically and numerically the structure of the ground state. If s denotes the spin of the fermions we have found that the ground state consists of clusters of (2s+1) particles at particles numbers of integer multiples of (2s+1). At zero temperature we have investigated the spectra of collective excitations using hydrodynamical approach to the problem. We gave a numerical method for determining arbitrary excitations, provided the equation of state of the atom-gas in question is known from some microscopic model. By the method the modes in the hydrodynamical approach can be calculated in a numerically exact way. We have calculated the collective excitations of a trapped superfluid Fermi gas in the BCS-BEC transition through the Feshbach resonance using the mean-field BCS model. We have improved the local density approximation for trapped fermions with spin one-half by including the gradient corrections in the self-consistent equations for the gap and the density. The method how we have treated the complete elliptic integrals in the previous problem helped us to calculate the density of states up to third order corrections and unfold the spectra for the nearest neighbor level-spacing distribution of Rashba-billiards.