Konform geometria Riemann-Finsler típusú metrikus tereken
Title in English
Conform geometry of spaces with Riemann-Finsler metrics
Panel
Mathematics and Computing Science
Department or equivalent
Institute of Mathematics (University of Debrecen)
Starting date
2005-01-01
Closing date
2009-12-31
Funding (in million HUF)
1.170
FTE (full time equivalent)
3.50
state
closed project
Final report
Results in Hungarian
Témánk az ún. Finsler-terek konform geometriája, különös tekintettel speciális tértípusok konform ekvivalenciájára. Egy sokaság Finsler-tér, ha az érintővektorok hosszát egy nem feltétlenül belső szorzatból származó funkcionálsereg segítségével mérni tudjuk. Finsler-terek konform ekvivalenciája azt jelenti, hogy a funkcionálok pontonként/érintőterenként egymás skalárszorosai. A legismertebb típus a Berwald-tereké. Egy Wagner-tér pedig mindig konform ekvivalens egy Berwald-térrel. Fő célunk a Wagner-terek belső geometriai jellemzésének a megoldása volt a Matsumoto-féle vannak-e nem triviálisan konform ekvivalens Berwald-terek problémával együtt. Eredményeink szerint két Berwald-tér konform ekvivalenciája mindig triviális hacsak nem Riemann-terekről van szó. Ez azt jelenti, hogy a Wagner-tereket jellemző konform kapcsolat lényegében egyértelműen meghatározott. Végül sikerült a belső geometriai jellemzés problémáját is megoldani egy a konform faktorra felírt parciális differenciálegyenletrendszer segítségével. Az általános elméletet az ún. Randers-terek esetében alkalmaztuk. Itt egy pontonként lineáris taggal deformált Riemann-féle metrikus tenzorral mérünk. Leírtuk azoknak a Riemann-tereknek a lokális struktúráját, melyek megengedik a metrikus tenzor lineáris deformációját úgy, hogy Wagner-teret kapjunk. Ilyen például a konstans negatív görbületű (hiperbolikus) tér. Ezek Wagner-térré deformált osztályát nevezi Szabó Zoltán Bolyai-Lobacsevszkij-Finsler-féle térnek.
Results in English
The topic is the conformal geometry of Finsler spaces and the conformal equivalence of spaces of special types. Finsler spaces are manifolds equipped with a smooth collection of functionals measuring the length of tangent vectors. The conformal equivalence means that the members of two collections of functionals are homothetic to each other on each tangent space. The class of Berwald spaces is relatively well-known. The Wagner spaces are conformal to Berwald spaces. The aim is an intrinsic characterization via the canonical date of Finsler spaces instead of the extrinsic conformal relation. This is closely related to the problem due to M. Matsumoto: are there conformally equivalent Berwald spaces? Our main result states that the conformal equivalence between two Berwald spaces are always trivial unless they are Riemannian. Consequently the conformal relation of a Finsler space to a Berwald space is essentially unique. The general solution of the intrinsic characterization of Wagner spaces via a system of partial differential equations for the scale function give nice results in case of Randers spaces. The length of tangent vectors is measured by a Riemannian metric perturbed with a 1- form. Our (local) structure theorem characterizes Riemannian spaces admitting a 1-form such that the perturbation results in a Wagner manifold. An important example is the hyperbolic space. In this case the joined Wagner space is called a Bolyai-Lobacsevszkij-Finsler space by Z. Szabó.