|
Here you can view and search the projects funded by NKFI since 2004
Back »
|
|
List of publications |
|
|
[24] I. Chajda and S. Radeleczki: Semilattices with sectionally antitone bijections, Novi Sad J. Math. Vol. 35, No 1, 93 - 101, 2005 | [22] Attila Körei and Sándor Radeleczki: Box elements in a concept lattice, ICFCA06 Conference Dresden, Conference Suplement, pp. 97-109. Editors: B. Ganter and L. Kwuida. Verlag. Allgemeine Wissenschaft, Drezda, 2006 | [6] G. Czédli:: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215., 2009 | [10] G. Czédli: A fixed point theorem for stronger association rules and its computational aspects, Acta Cybernetica, to appear, 2009 | [11] G. Czédli and E. T. Schmidt: Frankl's conjecture for large semimodular and planar semimodular lattices, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 47 (2008), 47-53., 2008 | [12] G. Czédli: A visual approach to test lattices, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, to appear., 2009 | [13] G. Czédli and E. T. Schmidt: CDW-independent subsets in distributive lattices, Acta Sci. Math. (Szeged), to appear., 2009 | [14] G. Czédli, M. Hartmann and E.T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009), 127-134., 2009 | [16] G. Czédli and M. Maróti: Two notes on the variety generated by planar modular lattices, Order, to appear., 2008 | [17] G. Czédli: A stronger association rule in lattices, posets and databases, Order, submitted, 2010 | [18] G. Czédli, M. Erné, B. Seselja and A. Tepavcevic: Characteristic triangles of closure operators with applications in general algebra, Algebra Universalis, submitted., 2010 | [19] G. Czédli and E. T. Schmidt: A cover-preserving embedding of semimodular lattices into geometric lattices, Advances in Mathematics, submitted., 2010 | [20] G. Czédli and M. Maróti: On the height of order ideals, Mathematica Bohemica, submitted., 2010 | [21] G. Czédli and E. T. Schmidt: Finite distributive lattices are congruence lattices of almost-geometric lattices, Algebra Universalis, submitted., 2010 | [23] I. Chajda and S. Radeleczki: On congruences of algebras defined on sectionally pseudocomplemented lattices, Proceedings of the 6-th International Conference on Algebra and Model Theory, Novosibirsk, August 2006. pp. 8-23., 2005 | [26] R. Pöschel and S. Radeleczki: Related structures with involution, Acta Math. Hungarica, to appear, 2009 | [27] J. Järvinen, S. Radeleczki and L. Veres: Rough sets determined by quasiorders, Order, submitted, 2010 | [28] E. K. Horváth, Z. Németh, G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, to appear, 2010 | [29] E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math., submitted, 2010 | [1] G. Czédli:: 2-uniform congruences in majority algebras and a closure operator, Algebra Universalis, 57 (2007), 63-73., 2007 | [2] G. Czédli, B. Seselja and A. Tepavcevic: On the semidistributivity of elements in weak congruence lattices of algebras and groups, Algebra Universalis 58 (2008) 349-355, 2008 | [3] G. Czédli:: Idempotent Mal'cev conditions and 2-uniform congruences, Algebra Universalis 59 (2008) 303-309, 2008 | [4] G. Czédli:: Some varieties and convexities generated by fractal lattices, Algebra Universalis, 60 (2009), 107-124., 2009 | [5] G. Czédli:: The product of von Neumann n-frames, its characteristic, and modular fractal lattices, Algebra Universalis, published online (February 10, 2009), DOI: 10.1007/s00012-009-2107-3, 2009 | [7] G. Czédli:: Stronger association rules for positive attributes, Novi Sad Journal of Mathematics 38 (2008), 103-110., 2008 | [8] G. Czédli and E.T. Schmidt: How to derive finite semimodular lattices from distributive lattices?, Acta Mathematica Hungarica, 121/3 (2008) 277-282., 2008 | [9] G. Czédli: On averaging Frankl's conjecture for large union-closed sets, Journal of Combinatorial Theory - Series A, 116 (2009), 724-729., 2009 | [15] G. Czédli, M. Maróti and E. T. Schmidt: On the scope of averaging for Frankl's conjecture, Order, to appear., 2009 | [25] Pöschel, R. and Radeleczki, S.: Endomorphisms of quasiorders and related lattices, Contributions to General Algebra, 18 (2008), 113 - 128., 2008 |
|
|
|
|
|
|
Back »
|
|
|