|
Effective, quantitative and computational investigations in diophntine number theory
|
Help
Print
|
Here you can view and search the projects funded by NKFI since 2004
Back »
|
|
List of publications |
|
|
Ádám Zs; HAJDU L; Luca F: Representing integers as linear combinations of S-units., Acta Arith. 138, 101-107, 2009 | Akyama S; Brunotte H; PETHŐ A:: Reducible cubic CNS polynomials,, Periodica Math. Hungar. 55, 177-183,, 2007 | Akiyama S; Brunotte H; PETHŐ A; Steiner W.: Periodicity of certain piecewise affine planar maps,, Tsukuba J. Math., 32, 197-251, 2008 | Akiyama S; Brunotte H; PETHŐ A; Thuswaldner J.: Generalized radix representations and dynamical systems III., Osaka J. Mathematics 45, 347-374, 2008 | Akiyama S; Brunotte H; PETHŐ A; Thuswaldner J.: Generalized radix representations and dynamical systems IV., Indagationas Math. 19, 333-348,, 2008 | BÉRCZES A; Evertse J-H; GYŐRY K.: Effective results for linear equations in two unknowns from a multiplicative division group., Acta. Arith. 136, 331-349, 2009 | BÉRCZES A; Evertse J-H; GYŐRY K; C. Pontreau: Effective results for points on certain subvarieties of tori, Math. Proc. Cambridge Phil. Soc. 147, 69-94,, 2009 | BÉRCZES A; HAJDU L; PETHŐ A: Arithmetic progressions in the solution sets of norm form equations., Rocky Mountain J. Math. 40, 383-395,, 2010 | BÉRCZES A; Járási I: On the application of index forms in cryptography., Periodica Math. Hungar. 58, 35-45, 2009 | BÉRCZES A; Pink I: On the diophantine equation x^2+p^{2k}=y^n., Arch. Math. 91 (2008), 505-517., 2008 | Dujella A; PETHŐ A; Tadic P: On arithmetic progressions on Pellian equations,, Acta Math. Hungar 120, 29-38, 2008 | I. GAÁL and M. Pohst,: Solving resultant form equations over number fields, Math Comput., 77 (2008), 2447-2453., 2008 | I. GAÁL and M. Pohst,: Diophantine equations over global function fields IV: S-unit equations in several variables with an application to norm form equations,, J. Number Theory, 130, 493-506, 2010 | I. GAÁL and M. Pohst,: A note on the number of solutions of resultant equations,, J. Algebra, Number Theory and Applications, 12, 185-189, 2008 | GYŐRY K.: On certain arithmetic graphs and their applications to diophantine problems, Functiones et Approximatio, 39 pp. 289-314, 2008 | GYŐRY K.: On the abc conjecture in algebraic number fields, Acta Arith, 133 (2008) pp. 281-295., 2008 | GYŐRY K; HAJDU L; PINTÉR Á: Perfect powers from products of consecutive terms in arithmetic progression., Compositio Math. 145, 845-864, 2009 | GYŐRY K; PINTÉR Á: Binomial Thue equations, ternary equations and power values of polynomials, Fundam. Prikl. Mat. 16, 61-77,, 2010 | HAJDU L.: Powerful arithmetic progressions., Indag. Math. 19, 547-561, 2009 | HAJDU L.: Optimal systems of fundamental S-units for LLL-reduction., Period. Math. Hungar. 59, 79-105,, 2009 | HAJDU L; Kovács T.: Parallel LLL-reduction for bounding the integral solutions of elliptic equations., Math. Comp. 78, 1201-1210, 2009 | HAJDU L; Tengely Sz;: Arithmetic progressions of squares, cubes and n-th powers., Functiones et Approximatio, 41, 129-138,, 2009 | HAJDU L; Tengely Sz; Tijdeman R: Cubes in products of terms in arithmetic progression., Publ. Math. Debrecen 74, 215-232, 2009 | Kirschenhofer P; PETHŐ A; Thuswaldner J: On a family of three term nonlinear integer recurrences., Int. J. Number Theory, 4, 135-146, 2008 | PETHŐ A;: On the boundary of the closure of the set of contractive polynomials., Integers 19, 311-325, 2009 | PETHŐ A; Ziegler V: Arithmetic progressions on Pell equations,, J. Number Theory, 128, 1389-1409, 2008 | A. PINTÉR: On a class of diophantine equations related to the numbers of cells in hyperplane arrangements, J. Number Theory, 129, 1664-1668, 2009 | A. PINTÉR: Binom Thue egyenletek, ternér egyenletek és polinomok hatványértékei, MTA doktori értekezés, Debrecen, 2008 | Ismail Naci Cangul, Musa Demirci, Florian Luca, A. PINTÉR: On the diophantine equation x^2+2^a 11^b=y^n,, Fibonacci Quarterly 48, 39-46,, 2010 | HAJDU L, and R. Tijdeman: A criterion for polynomials to divide infinitely many k-nomials, in: Diophantine Approximations, (H.P. Schlickewei, K. Schmidt and R. F. Tichy, eds.), Developments in Mathematics 16, Springer-Verlag, 211-220, 2008 | HAJDU L, and N. Saradha: On a problem of Pillai and its generalizations, Acta Arith. 144, 323-347,, 2010 | HAJDU L, A. Schinzel and M. Skalba: Multiplicative properties of sets of positive integers, Archiv der Math. 93, 269-276, 2009 | GAÁL I. and M. Pohst: Diophantine equations over global function fields III: An application to resultant form equations, Funct. Approx. Comment. Math. XXXIX. 97-102, 2008 | GAÁL I. and M. Pohst: Diophantine equations over global function fields V: Resultant equations in two unknown polinomials, Int. J. Pure Appl. Math., 53, 307-317, 2009 | Bazsó A, BÉRCZES A, GYŐRY K, and PINTÉR Á,: On the resolution of equations Ax^n-By^n=C in integers x,y and n ≥ 3,, II, Publ. Math.Debrecen 76, 227-250., 2010 | GYŐRY K, and C. Smyth,: The divisibility of a^n – b^n by powers of n,, Integers, 10, 319-334,, 2010 | GYŐRY K,: S-unit equations in number fields: effective results, generalizations, abc-conjecture, in:, Analytic number theory and related topics, Kyoto, 2009. 1710, 71-84,, 2010 | GYŐRY K, HAJDU L, and Tijdeman R,: Irreducibility criteria of Schur-type and Pólya-type,, Monatsh. Math. 163, 415-443,, 2011 | A. PETHŐ,: Fifteen problems in number theory,, Acta Univ. Sap., Math. 2, 72—83,, 2010 | P. Kirschenhofer, A. PETHŐ, P. Surer and J. Thuswaldner,: Finite and periodic orbits of shift radix systems,, J. Théorie Nombres de Bordeaux, 22, 421-448, 2010 | A. Huszti and A. PETHŐ,: A secure electronic exam system,, Publ. Math. Debrecen, (közlésre elfogadva),, 2010 | C. Fuchs and A. PETHŐ,: On composite rational functions having a bounded number of zeros and poles,, Proc. AMS 139, 31-38,, 2011 | A. BÉRCZES, J. Folláth and A. PETHŐ,: On a family of collision-free functions,, Tatra Mountains Math. Publ. 47, 1-13,, 2010 | I. GAÁL and M. Pohst,: On solving norm equations in global function fields,, J. Math. Crypt., 237-248,, 2009 | I. GAÁL and M. Pohst,: Solving explicitly diophantine equations of type F(x,y)=G(x,y) over function fields,, Funct. Approx. Comment. Math., (közlésre elfogadva),, 2010 | HAJDU L. and N. Saradha,: On a problem of Recaman and its generalization,, J. Number Theory, 131. 18-24,, 2011 | Hajdu A., HAJDU L. and R. Tijdeman,: Approximation of Euclidean distances by chamfer distances,, Acta Cybernetica (közlésre benyújtva)., 2010 | HAJDU L.,: Számtani sorozatok multiplikatív tulajdonságú halmazokban,, MTA doktori értekezés,, 2009 | BÉRCZES A.: On the sumsets of geometric progressions,, Publ. Math. Debrecen, 77, 261-276,, 2010 | BÉRCZES A., Liptai K., Pink I.: On balancing recurrence sequences,, Fibonacci Quart., 48, 121-128,, 2010 | Liptay K, Luca F, PINTER A, Szalay L,: Generalized balancing numbers, Indagationes Mathematicae-New Series 20, 87-100,, 2009 | Gy. Péter, A. PINTER , A. Schinzel,: On equal values of trinomials,, Monatshefte für Mathematik Paper DOI: 10.1007/s00605-009-0169-0,, 2010 | Cangul IN, Demirci M, Luca F, PINTER A, Soydan G,: On the diophantine equation x^2+2^a 11^b=y^n,, Fibonacci Quartely 48, 39-46,, 2010 | A. BÉRCZES, J. H. Evertse and K. GYŐRY,: Multiply monogenic orders,, Ann. Scuola Normale Sup. Pisa, (közlésre elfogadva),, 2011 | PINTER A, van der Poorten A,: A simple observation on simple zeros,, Archiv Math, 35, 355-361,, 2010 | J. H. Evertse and K. GYŐRY,: Effective results for unit equations over finitly generated domains,, J Reine Angew. Math (megjelenés alatt), 2011 | A. Dujella, K. GYŐRY and A PINTER: On power values of pyramidal numbers, T,, Acta Arith, (megjelenés alatt), 2011 | A. PETHŐ and sc V. Ziegler,: On biquadratic fields that admit unit power integral basis,, Acta Math. Hungar., (megjelenés alatt), 2011 | Manfred G. Madritsch and A. PETHŐ,: Asymptotic normality of additive functions on polynomial sequences in canonical number systems,, J. Number Theory, 131, 1553-1574., 2011 | Csernusné Ádámkó Éva és PETHŐ Attila: Helyszin-bélyegzés, hitelesített GPS koordináták, in Az elmélet és a gyakorlat találkozása a térinformatikában, Szerk: Dr. Lóky József, Debrecen pp. 381-388,, 2011 | A. PETHŐ and M.E. Pohst,: On the indices of multiquadratic number fields, Acta Arith. (megjelenés alatt), 2011 | Manfred G. Madritsch and A. PETHŐ,: A note on generalized radix representations and dynamical systems,, (közlésre benyujtva), 2011 | I. GAÁL, and M. Pohst: The sum of two S-units being a perfect power in global function fields, Math. Slovaka, (megjelenés alatt), 2011 | I. GAÁL and T. Szabó,: A note on the minimal indices of pure cubic fields, JP Journal of Algebra, Number Theory and Applications, 19, 129-139,, 2010 | C. Fieker, I. GAÁLl and M. Pohst: On computing integral points of a Mordell curve over rational function fields in characteristic, kézirat, 2010 | A. PINTER, N. Varga,: Resolution of a nontrivial diophantine equation without reduction methods,, Publ. Math. Debrecen, (megjelenés alatt), 2011 | J. Ferenczik, Á. PINTÉR, B. Porvázsnyik,: On Equal Values of Stirling Numbers of the Second Kind., Applied Mathematics and Computation 218, 980-984,, 2011 | Grenczer M., PINTER A, Zsuga J, Kemeny-Beke A, Juhasz B, Szodoray P, Tosaki A, Gesztelyi R,: The influence of affinity, efficacy, and slope factor on the estimates obtained by receptorial responsiveness method (RRM): A computer simulation study., Canadian Journal of Physiology and Pharmatology 88, 1061-1073,, 2010 | Grenczer M, Zsuga J, Majoros L, PINTER A, Kemeny-Beke A, Juhasz B, Tosaki A, Gesztelyi R,: Effect of asymmetry of concentration-response curves on the results obtained by the receptorial responsiveness method (RRM): An in silico study., Canadian Journal of Physiology and Pharmacology 88, 1074-1083,, 2010 | V. Ziegler, Á. PINTÉR,: On Arithmetic Progressions in Recurrences-A New Characterization of the Fibonacci sequence,, Journal of Number Theory, (megjelenés alatt), 2011 | A. Bazsó, Á. PINTÉR, H.M. Srivastava,: A Refinement of Faulhabers Theorem Concerning Sums of Powers of Natural Numbers, Applied Math. Letters, (megjelenés alatt), 2011 | Á. PINTÉR, Sz. Tengely: The Korteweg-deVries equation and diophantine problem, Acta Arithmetica, (megjelenés alatt),, 2011 | HAJDU L. and F. Luca,: On the length of arithmetic progressions in linear combinations of S-units,, Archiv der Math. 94, 357-363,, 2010 | HAJDU L. and Kovács T.,: Almost fifth powers in arithmetic progressions, J. Number Theory 131, 1912-1923,, 2011 | K.J. Batenburg, W. Fortes, HAJDU L. and R. Tijdeman,: Bounds on the difference between reconstructions in binary tomography,, Discrete Geometry and Computer Imaginary 2011, LNCS 6607, 369-380,, 2011 | Kovács L., Tomán H., Jónás Á., HAJDU L. and Hajdu A.,: Generalizing the majority voting scheme to conditional voting,, Lecture Notes in Artificial Intelligence 6679, 189-196,, 2011 | HAJDU L. and N. Saradha,: Disproof of a conjecture of Jacobsthal,, Math. Comp. (közlésre elfogadva), 2011 | HAJDU L. and R. Tijdeman,: Representing integers as linear combinations of powers,, Publ. Math. Debrecen, (közlésre elfogadva), 2011 | BÉRCZES A., A. Dujella, HAJDU L. and F. Luca,: On the size of sest whose elements have perfect power n-shifted products,, Publ. Math. Debrecen (közlésre elfogadva), 2011 | HAJDU L., N. Saradha and R. Tijdeman,: On a conjecture of Pomerance,, Acta Arith. (közlésre elfogadva), 2011 | B. van Dalen, HAJDU L. és R. Tijdeman,: Bounds for discrete tomography solutions,, Indag Math. (közlésre benyujtva), 2011 | BÉRCZES A, Pink I.: On the Diophantine Equation x^2+d^{2k+1}=y^n,, Glasgow Math. J. (megjelenés alatt),, 2011 | BÉRCZES A. Ziegler V.,: On geometric progressions on Pell equations and Lucas sequences,, (megjelenés alatt), 2011 | BÉRCZES A., Dujella A., HAJDU L., F. Luca,: On the size of sets whose elements have perfect power n-shifted products,, Publ. Math. Debrecen (közlésre elfogadva), 2011 | BÉRCZES A., F. Luca,: On the largest prime factor of numerators of Bernoulli numbers,, Indag. Math., (megjelenés alatt),, 2011 | BÉRCZES A., F. Luca,: On the sum of digits of numerators of Bernoulli numbers,, Canad. Math. Bull., (megjelenés alatt),, 2011 | A. BÉRCZES, J.H. Evretse and K. GYŐRY,: On the numbers of pairs of binary forms with given degree and given resultant,, Acta Arith., 128, 19-54., 2007 | A. BÉRCZES, J.H. Evertse and K. GYŐRY,: Diophantine problems related to discriminants and resultants of binary forms, in, Diophantine Geometry, Pisa 45-63, 2007 | K. GYŐRY and Á. PINTÉR,: On the resolution of equations Ax^n - By^n = C in integers x, y and n≥3,, Publ. Math. Debrecen 70, 483-501, 2007 | K. GYŐRY and Á. PINTÉR,: Polynomial powers and a common generalization of binomial Thue-Mahler equations and S-unit equqtions, in Diophantine Equations,, Narosa Publ. House, New Delhi, India, 103-119., 2008 |
|
|
|
|
|
|
Back »
|
|
|