|
Here you can view and search the projects funded by NKFI since 2004
Back »
|
|
List of publications |
|
|
Haberer D; Vyalikh DV; Taioli S; Dóra B; Farjam M; Fink J; Marchenko D; Pichler T; Ziegler K; Simonucci S; Dresselhaus MS; Knupfer M; Büchner B; Grüneis A: Tunable bandgap in hydrogenated quasi-free-standing graphene, Nano Lett. 10, 3360, 2010 | Dóra B; Haque M; Zaránd G: Crossover from adiabatic to sudden interaction quench in a Luttinger liquid, Phys. Rev. Lett. 106, 156406, 2011 | Kiss A; Pályi A; Ihara Y; Wzietek P; Alloul H; Simon P; Zólyomi V; Koltai J; Kürti J; Dóra B; Simon F: Enhanced NMR relaxation of Tomonaga-Luttinger liquids and the magnitude of the carbon hyperfine coupling in single-wall carbon nanotubes, Phys. Rev. Lett. 107, 187204, 2011 | Dóra B; Cayssol J; Simon F; Moessner R: Optically engineering the topological properties of a spin Hall insulator, Phys. Rev. Lett. 108, 056602, 2012 | Nakamura M; Castro EV; Dóra B: Valley symmetry braking in bilayer graphene: a test to the minimal model, Phys. Rev. Lett. 103: 266804, 2009 | Dóra B; Simon F: Unusual hyperfine interaction of Dirac electrons and NMR spectroscopy in graphene, Phys. Rev. Lett. 102: 197602, 2009 | Dóra B; Simon F: Electron spin dynamics in strongly correlated metals, Phys. Rev. Lett. 102: 137001, 2009 | Dóra B; Ziegler K; Thalmeier P; Nakamura M: Rabi oscillations in Landau quantized graphene, Phys. Rev. Lett. 102: 036803, 2009 | Simon F; Dóra B; Murányi F; Jánossy A; Forró L; Budko S; Petrovic C; Canfield PC: Generalized Elliott-Yafet theory of electron spin relaxation in metals: the origin of the anomalous electron spin lifetime in MgB2, Phys. Rev. Lett. 101: 177003, 2008 | Dóra B; Gulácsi M; Koltai J; Zólyomi V; Kürti J; Simon F: Electron spin resonance signal of Luttinger liquids and single-wall carbon nanotubes, Phys. Rev. Lett. 101: 106408, 2008 | Bácsi Á; Virosztek A: Local density of states and Friedel oscillations in graphene, Phys. Rev. B 82, 193405, 2010 | Bácsi Á; Virosztek A; Borda L; Dóra B: Mean field quantum phase transition in graphene and in general gapless systems, Phys. Rev. B 82, 153406, 2010 | Dóra B; Ziegler K: Gaps and tails in graphene and graphane, New J. Phys. 11: 095006, 2009 | Dóra B; Castro EV; Moessner R: Quantum quench dynamics and population inversion in bilayer graphene, Phys. Rev. B 82, 125441, 2010 | Haberer D; Petaccia L; Farjam M; Taioli S; Jafari SA; Nefedov A; Zhang W; Calliari L; Scarduelli G; Dóra B; Vyalikh DV; Pichler T; Wöll C; Alfe DD; Simonucci S; Dresselhaus MS; Knupfer M; Büchner B; Grüneis A: Direct observation of a dispersionless impurity band in hydrogenated graphene, Phys. Rev. B 83, 165433, 2011 | Dóra B; Moessner R: Dynamics of the spin-Hall effect in topological insulators and graphene, Phys. Rev. B 83, 073403, 2011 | Dóra B; Kailasvuori J; Moessner R: Lattice generalization of the Dirac equation to arbitrary spin: the role of the flat bands, Phys. Rev. B 84, 195422, 2011 | Wakutsu T; Nakamura M; Dóra B: Layer-resolved conductivities in multilayer graphenes, Phys. Rev. B 85, 033403, 2012 | Fábián G; Dóra B; Antal Á; Szolnoki L; Korecz L; Rockenbauer A; Nemes NM; Forró L; Simon F: Testing the Elliot-Yafet spin-relaxation mechanism in KC8; a model system of biased graphene, Phys. Rev. B 85: 235405, 2012 | Dóra B; Bácsi Á; Zaránd G: Generalized Gibbs ensemble and work statistics of a quenched Luttinger liquid, Phys. Rev. B 86: 161109(R), 2012 | Pollmann F; Haque M; Dóra B: Linear quantum quench in the Heisenberg XXZ chain: time dependent Luttinger model description of a lattice system, arXiv:1211.1195; Phys. Rev. B rapid communications (közlésre elfogadva), 2012 | Dóra B; Ziegler K; Thalmeier P: On the effect of weak disorder on the density of states in graphene, Phys. Rev. B 77: 115422, 2008 | Dóra B; Gulácsi M: Inelastic scattering from local vibrational modes, Phys. Rev. B 78: 165111, 2008 | Dóra B: Local classical and quantum criticality due to electron-vibration interaction, Phys. Rev. B 79: 165121, 2009 | Ziegler K; Dóra B; Thalmeier P: Local density of states in disordered graphene, Phys. Rev. B 79: 235431, 2009 | Dóra B; Halbritter A: Temperature dependent conductances of deformable molecular devices, Phys. Rev. B 80: 155402, 2009 | Thalmeier P; Dóra B; Ziegler K: Surface acoustic wave propagation in monolayer graphene, Phys. Rev. B 81: 041409(R), 2010 | Dóra B; Moessner R: Non-linear electric transport in graphene: quantum quench dynamics and the Schwinger mechanism, Phys. Rev. B 81, 165431, 2010 | Dóra B: Disorder effect on the density of states in Landau quantized graphene, Low Temp. Phys. 34: 801, 2008 | Dóra B; Gulácsi M; Simon F; Wzietek P; Kuzmany H: Luther-Emery liquid in the NMR relaxation rate of carbon nanotubes, Phys. Stat. Sol. B 245: 2159, 2008 | Ma T; Dóra B: NMR relaxation rate and static spin susceptibility in graphene, arXiv: 0802.2387, 2008 | Dóra B; Gulácsi M: Inelastic scattering off a nanomechanical resonator, J. Supercond. Nov. Magn. 22: 25, 2009 | Ványolos A; Varga G: Interacting particles in two dimensions: numerical solution of the four-dimensional Schrödinger equation in a hypercube, arXiv: 0808.3976, 2008 | Ványolos A; Dóra B; Virosztek A: Optical conductivity and electronic Raman response of cuprate superconductors, Physica C 470, S185, 2010 | Dóra B; Gulácsi M; Rusznyák Á; Koltai J; Zólyomi V; Kürti J; Simon F: Single-wall carbon nanotubes: spintronics in the Luttinger liquid phase, Phys. Stat. Sol. B 246: 2744, 2009 | Galambos M; Fábián G; Simon F; Ciric L; Forró L; Korecz L; Rockenbauer A; Koltai J; Zólyomi V; Rusznyák Á; Kürti J; Nemes NM; Dóra B; Peterlik H; Pfeiffer R; Kuzmany H; Pichler T: Identifying the electron spin resonance of conduction electrons in alkali doped SWCNTs, Phys. Stat. Sol. B 246: 2760, 2009 | Dóra B; Gulácsi M; Sodano P: Majorana zero modes in graphene with warping, Phys. Stat. Sol. RRL 3: 169, 2009 | Ványolos A; Dóra B; Virosztek A: Infrared and electronic Raman response of coexisting d-wave density wave and d-wave superconductivity, Eur. Phys. J. B 77, 65, 2010 | Dóra B; Simon F: Hyperfine interaction in graphene: The relevance for spintronics, Phys. Stat. Sol. B 247, 2935, 2010 | Szirmai P; Fábián G; Dóra B; Koltai J; Zólyomi V; Kürti J; Nemes NM; Forró L; Simon F: Density of states deduced from ESR measurements on low-dimensional nanostructures; benchmarks to identify the ESR signals of graphene and SWCNTs, arXiv:1109.2453, 2011 | Virosztek A; Bácsi Á: Friedel oscillations around a short range scatterer: The case of graphene, J. Supercond. Nov. Magn. 25, 691, 2012 | Dóra B; Murányi F; Simon F: Electron spin dynamics and electron spin resonance in graphene, Europhys. Lett. 92, 17002, 2010 | Simon F; Murányi F; Dóra B: Theory and model analysis of spin relaxation time in graphene - Could it be used for spintronics?, Phys. Stat. Sol. B 248: 2631, 2011 | Boross P; Dóra B; Moessner R: Testing the Dirac equation against the tight binding model for nonequilibrium graphene, Phys. Stat. Sol. B 248:2627, 2011 | Cayssol J; Dóra B; Simon F; Moessner R: Floquet topological insulators, arXiv: 1211.5623; Phys. Stat. Sol. B rapid research letter (közlésre elfogadva), 2012 | Boross P; Dóra B; Kiss A; Simon F: A unified theory of the Elliott-Yafet and the D'yakonov-Perel' spin-relaxation mechanisms, arXiv:1211.0826, 2012 | Maki K; Dóra B; Virosztek A: Unconventional density waves in organic conductors and in superconductors, pp. 569-587 in: Lebed AG. The physics of organic superconductors and conductors. Springer, Berlin, 2008 |
|
|
|
|
|
|
Back »
|
|
|