|
Here you can view and search the projects funded by NKFI since 2004
Back »
|
|
List of publications |
|
|
K.J. Böröczky, F. Fodor, M. Reitzner, V. Vig: Mean width of random polytopes in a reasonably smooth convex body, Journal of Multivariate Analysis, 100 (2009), 2287-2295., 2009 | K.J. Böröczky, R. Schneider: Mean width of circumscribed random polytopes, CMB, 53 (2010) 614-628., 2010 | J. Kincses: The Helly dimension of the L_1-sum of convex sets, Acta Sci. Math. (Szeged), 76 (2010), 643-657., 2010 | E. Makai, Jr.: An addendum to our paper ``Further remarks on delta- and theta -modifications'', Acta Math. Hungar., 126 (2010), 198-., 2010 | K.J. Böröczky, B. Csikós: Approximation of smooth convex bodies by circumscribed polytopes with respect to the surface area, Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 79, 229-264., 2009 | A. Császár, E. Makai, Jr.: Further remarks on delta- and theta-modifications, Acta Math. Hungar. 123 (2009), 223-228, 2009 | G. Ambrus, I. Bárány: Longest convex chains, Random Structures and Algorithms, 35( 2009), 137--162, 2009 | I. Bárány, F. Fodor, V. Vígh: Intrinsic volumes of inscribed random polytopes in smooth convex bodies, Adv. Appl. Probab. 42 (2010), no. 3, 605-619., 2010 | K.J. Böröczky, B. Csikós: A new version of L. Fejes Tóth's Moment Theorem, Studia Sci. Hung., 47 (2010), 230-256., 2010 | K.J. Böröczky, F. Fodor, D. Hug: The mean width of random polytopes circumscribed around a convex body, J. London Math. Soc. 81 (2010), no. 2, 499—523., 2010 | K.J. Böröczky, D. Hug: Stability of the inverse Blaschke-Santaló inequality for zonoids, Adv. Appl. Math., 44 (2010), 309-328., 2010 | K.J. Böröczky: Stability of the Blaschke-Santaló and the affine isoperimetric inequalities, Advances in Mathematics, 225 (2010), 1914-1928., 2010 | K.J. Böröczky: Stability of some interrelated geometric and functional inequalities, In: Keith Ball, Martin Henk, Monika Ludwig (eds): Convex Geometry and its applications, Oberwolfach Report No. 53/2009, 12-14, 2010 | András Bezdek, Ferenc Fodor: Extremal triangulations of convex polygons, Symmetry Cult. Sci., 22 (2011), No. 3-4, 427-434., 2011 | K. Ball, K.J. Böröczky: Stability of some versions of the Pr\'ekopa-Leindler inequality., Monatshefte Math., 163 (2011), 1-14., 2011 | K.J. Böröczky, E. Lutwak, D. Yang, G. Zhang: The logarithmic Minkowski problem., Journal of AMS, 26, 831-852., 2013 | C. Bavard, K.J. Böröczky, B. Ormos, I. Prok, L. Vena, G. Wintsche: Regularly triangulated hyperbolic surfaces., Acta Sci. Math. (Szeged), 77 (2011), 669-679., 2011 | Ambrus, Gergely; Kevei, Péter; Vígh, Viktor: The diminishing segment process, Statist. Probab. Lett., 82, no. 1, 191–195., 2012 | Gergely Ambrus, Keith Ball, Tamas Erdelyi: Chebyshev constants for the unit circle, BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, accepted, 2013 | K.J. Böröczky, E. Lutwak, D. Yang, G. Zhang: The log-Brunn-Minkowski-inequality, Advances in Mathematics, 231, 1974-1997, 2012 | K.J. Böröczky, Oriol Serra: Remarks on the equality case of the Bonnesen inequality, Archiv der Math., 99, 189-199, 2012 | K.J. Böröczky, F. Fodor, D. Hug: Intrinsic volumes of random polytopes with vertices on the boundary of a convex body, Transactions of AMS, 365, 785-809, 2013 | K.J. Böröczky, E. Makai, M. Meyer, S. Reisner: Volume product in the plane - lower estimates with stability, Studia Sci. Math. Hung., 50, 159-198., 2013 | K.J. Böröczky: Stronger versions of the Orlicz-Petty projection inequality, J. Diff. Geom., accepted, 2013 | F. Barthe, K.J. Böröczky, M. Fradelizi: Stability of the functional forms of the Blaschke-Santaló inequality, Monatshefte Math., accepted, 2013 | T Bisztriczky, F Fodor, D Oliveros: Separation in totally-sewn 4-polytopes with the decreasing universal edge property, BEITRÄGE ZUR ALGEBRA UND GEOMETRIE 53:(1) pp. 123-138., 2012 | F Fodor, V Vígh: Disc-polygonal approximations of planar spindle convex sets, ACTA SCIENTIARUM MATHEMATICARUM - SZEGED 78:(1-2) pp. 331-350., 2012 | Endre Makai: The hereditary monocoreflective subcategories of Abelian groups and R-modules, Period. Math. Hungar. 65, 107–123., 2012 |
|
|
|
|
|
|
Back »
|
|
|