Electronic Devices and Technologies (Council of Physical Sciences)
100 %
Panel
Informatics and Electrical Engineering
Department or equivalent
Institute of Technical Physics and Materials Science (Research Center of Natural Sciences)
Participants
Balázsi, Csaba Erdélyi, Róbert Kurunczi, Sándor Pongrácz, Anita Volk, János Vonderviszt, Ferenc
Starting date
2009-01-01
Closing date
2012-12-31
Funding (in million HUF)
5.025
FTE (full time equivalent)
6.33
state
closed project
Summary in Hungarian
Napjainkban hatalmas igény lép fel a biológiai és más kémiai anyagok detektálására: minél érzékenyebb, gyorsabb, okosabb szenzorokra van szükség az életminőség, illetve a biztonság javítása érdekében. Bio-kompatibilis nanostruktúrák alkalmazásával lehetőség nyílik ezigénynek a kielégítésére, hiszen az érzékelő elem méretének csökkenésével nő a felület/ térfogat aránya, miáltal nő a környezet változására való érzékenysége is. A jelen pályázat célja, hogy elősegítse azoknak a folyamatoknak a megértését, amelyek meghatározzák a gazdaságos, alacsony hőmérsékletű vizes kémiai módszerrel növesztett vékony (~30nm) ZnO nanoszálaknak a minőségét és bioreceptorokkal való funkcionalizálását. Tervezzük a detektálandó biológiai elemek köthetőségének, valamint bioreceptorokkal ellátott nanoszál érzékenységének vizsgálatát különböző tulajdonságú bio-mollekulákkal. A kutatás eredményeként egy, biológiai molekulákra érzékeny, megbízható, gyors érzékelési eljárás fejlesztése várható.
Summary
Nowadays, there is an enormous demand on detection of biological and chemical species: more sensitive, faster, more reliable and smarter sensors are required for improving life quality and safety. Biocompatible nanostructures are to be applied in sensorics to fulfill this demand, because with the decrease in the dimension of the sensing elements, its surface-to-volume ratio increases giving rise to higher sensitivity to changes of the environment. The present project aims at a better understanding of those key processes, which control the quality of very thin (~30nm) ZnO nanowires grown by the economical, low temperature aqueous chemical technique, and functionalized by bioreceptors. We plan to study the effect of analyte binding and check the sensitivity of functionalized nanowires using target molecules of widely different characteristics. As a final result, the development of a highly sensitive, reliable biosensing scheme for real-time detection of biological species in aqueous solution can be expected. Key words: Nanowires, growth, bioreceptor, biofuncionalization, conductivity modulation
Final report
Results in Hungarian
Kimutattuk, hogy az egyszerű és alacsony hőmérsékletű nedves kémiai eljárásban a vizes cinknitrát/hexametiltetramin oldat koncentrációjának csökkentésével csökken a növesztett ZnO nanoszálak vastagsága. Újszerű módszert dolgoztunk ki a nanoszál növesztésére, amelyben a ZnO magrétegre leválasztott Stöber szilika nanogömbök monorétegével nemcsak vékony de hosszabb nanoszálak is növeszthetőek. Kimutattuk, hogy az ilyen szálnak jobb az UV fénnyel történő modulálhatósági hatásfoka.
Megmutattuk, hogy rendezett, lokalizált nanoszálak növeszthetők a magrétegre felvitt PMMA fedőrétegben kialakított nukleációablakokon keresztül. Az így növesztett nanoszálak rendezettsége, minősége inkább az alkalmazott magréteg kristályi minőségétől függ, semmint a felületi durvaságától.
Eljárást dolgoztunk ki az IC planár technológiába jobban integrálható horizontális nanoszálak növesztésére. A kontaktusokról induló és oxidon tovább növő szálak lehetővé teszik az eszköz térvezérlésű tranzisztorként hátsó gate általi vezérelhetőségét, amivel növelhető a szál modulálhatósági hatásfokát, modulálási sebességét.
Demonstráltuk a horizontális szálak modulálhatóságát UV fényre (kb. öt nagyságrend változás ) illetve az IgG fehérjére Z domén receptorokkal. A modulálás már nagyon kis IgG (25 nM) koncentrációnál megfigyelhető, de a koncentráció növekedésével telítési jelleget mutat. Ennek valószínűleg a szálon szabadon maradt receptorok csökkenő száma lehet az oka.
Results in English
We have shown that in the chemical bath deposition the thickness of the grown ZnO nanowires (NWs) is reduced with decreasing concentration of the aqueous zinc nitrate and hexamethylentetramine. A novel route has been developed using a monolayer of silica nanospheres deposited on ZnO seedlayer to grow thin but much longer NWs than usual. Such NWs were observed to have better UV modulation property than those formed without nanosphere layer.
We demonstrated that the selective growth of NWs could be well realized via the nucleation windows pre-formed in the PMMA cap-layer over the seed layer. The crystal quality and alignment of such NWs was determined by the dispersion in the crystallographic orientation of the seed layer while the role of its surface roughness was negligible.
Method to grow horizontal NWs which is integrable into IC planar technology has been developed. Being nucleated from the electrodes then grown along oxide surface, the NWs can be gated by a back electrode as a field effect transistor, thus their modulation efficiency, speed can be further achieved.
Modulation of the horizontal NWs has been demonstrated for UV illumination (five order of magnitude change) and IgG with Z domain receptors. The modulation effect of IgG can be observed even at very low concentration (25 nM), which showed a saturation tendency with increasing IgG concentration, probably due to the limitation of the available binding sites of the Z domains on the NW surface for the IgGs.