|
Here you can view and search the projects funded by NKFI since 2004
Back »
|
|
List of publications |
|
|
G. Czédli: Sums of lattices and a relational category, Order 26 (2009), 309–318., 2009 | G. Czédli and G. Grätzer: Lattice tolerances and congruences, Algebra Universalis 64 (2010) , 66 (2011) 5-6. (DOI: 10.1007/s00012-011-0139-y), 2010 | E. T. Schmidt: Cover-preserving embeddings of finite length semimodular lattices into simple semimodular lattices, Algebra Universalis , 64 (2010), 101-102, ( doi: 10.1007/s00012-010-0091-2), 2010 | E. T. Schmidt: Semimodular lattices and the Hall-Dilworth gluing construction, Acta Math. Hungar., 127 (3) (2010), 220-224. DOI: 10.1007/s10474-010-9120-z, 2010 | G. Czédli and E. T. Schmidt: Some results on semimodular lattices, Contributions to General Algebra 19. Proceedings of the Olomouc Conference 2010 (AAA 79+ CYA 25) , Verlag Johannes Hein, Klagenfurt 2010, 45-56. ISBN 978-3-7084-0407-3, 2010 | G. Czédli and B. Skublics: The ring of an outer von Neumann frame in modular lattices, Algebra Universalis, 64 (2010) 187-202. ( DOI: 10.1007/s00012-010-0098-8 ), 2010 | G. Czédli: Some new closures on orders, Mathematica Slovaca, 61/6 (2011) 859–870. (DOI: 10.2478/s12175-011-0053-y ), 2011 | G. Czédli and E. T. Schmidt: The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices, Algebra Universalis 66 (2011) 69-79. (DOI: 10.1007/s00012-011-0144-1), 2011 | E. T. Schmidt: Congruence lattices and cover-preserving embeddings of finite length semimodular lattices, Acta Sci. Math. (Szeged), 77, No. 1-2, 47-52 (2011), 2011 | G. Czédli: The matrix of a slim semimodular lattice, Order, 29 (2012) 85-103. (DOI: 10.1007/s11083-011-9199-z ), 2012 | G. Czédli and E. T. Schmidt: Slim semimodular lattices. I. A visual approach, Order, 29:(3), 481-497 (DOI: 10.1007/s11083-011-9215-3), 2012 | G. Czédli and A. B. Romanowska: An algebraic closure for barycentric algebras and convex sets, Algebra Universalis, 68:(1-2), 111-143. (DOI: 10.1007/s00012-012-0195-y), 2012 | G. Czédli: Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices, Algebra Universalis, 67:(4) pp. 313-345. (2012) (DOI: 10.1007/s00012-012-0190-3), 2012 | E. T. Schmidt: Rectangular hulls of semimodular lattices, Periodica Mathematica Hungarica, 65 (to appear), 2012 | G. Czédli, L. Ozsvárt and B. Udvari: How many ways can two composition series intersect?, Discrete Mathematics 312, 3523-3536 (2012) (DOI: 10.1016/j.disc.2012.08.003), 2012 | G. Czédli and E. T. Schmidt: Slim semimodular lattices. II. A description by patchwork systems, ORDER, published online August 29, 2012 (DOI: 10.1007/s11083-012-9271-3 ), 2013 | I. Chajda, G. Czédli, and R. Halas: Independent joins of tolerance factorable varieties, Algebra Universalis 69, 83-92 (2013), DOI: 10.1007/s00012-012-0213-0, 2013 | G. Czédli, J. Grygiel, K. Grygiel: Distributive lattices determined by weighted double skeletons, Algebra Universalis, Published online 06 April 2013, DOI: 10.1007/s00012-013-0232-5, 2013 | G. Czédli and E. W. Kiss:: Varieties whose tolerances are homomorphic images of their congruences, Bulletin of the Australian Mathematical Society, 87 (2013), 326-338 , DOI 10.1017/S0004972712000603, 2013 | G. Czédli and G. Grätzer: Notes on planar semimodular lattices. VII. Resections of planar semimodular lattices, Order, published online December 12, 2012; DOI 10.1007/s11083-012-9281-1, 2013 | I. Chajda, G. Czédli, R. Halas, P. Lipparini: Tolerances as images of congruences in varieties defined by linear identities, Algebra universalis, DOI:10.1007/s00012-013-0219-2, published online on January 31, 2013., 2014 | G. Czédli, T. Dékány, L. Ozsvárt, N. Szakács, B. Udvari: On the number of slim, semimodular lattices, Mathematica Slovaca, submitted on June 5, 2012, 2014 | G. Czédli: The asymptotic number of planar, slim, semimodular lattice diagrams, Order, submitted on June 16, 2012, 2014 | G. Czédli: Coordinatization of join-distributive lattices, Algebra Universalis submitted on October 12, 2012, 2014 | G. Czédli and I. V. Nagy: Varieties of distributive rotational lattices, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, submitted on August 27, 2012, 2014 | K. Adaricheva and G. Czédli: Notes on the description of join-distributive lattices by permutations, Algebra Universalis, submitted on October 12. 2012, 2014 | G. Czédli: Finite convex geometries of circles, Discrete Mathematics, submitted on December 14, 2012., 2014 | G. Czédli and A. Romanowska: Generalized convexity and closure conditions, Internation International Journal of Algebra and Computation, submitted on December 26, 2012, 2014 | G. Czédli: Quasiplanar diagrams and slim semimodular lattices, Order, submitted on December 31, 2012, 2014 | G. Grätzer and E. T. Schmidt: A short proof of the congruence representation theorem for semimodular lattices, Algebra Universalis, to appear, 2014 | G. Czédli and E. T. Schmidt: Composition series in groups and the structure of slim semimodular lattices, First submitted on May 23, 2011 (and no report yet), 2014 | G. Czédli, M. Maróti, A. B. Romanowska: A dyadic view of rational convex sets, Commentationes Mathematicae Universitatis Carolinae, submitted on November 5, 2012, 2014 |
|
|
|
|
|
|
Back »
|
|
|