Functional equations and inequalities  Page description

Help  Print 
Back »

 

Details of project

 
Identifier
81402
Type NK
Principal investigator Páles, Zsolt
Title in Hungarian Függvényegyenletek és egyenlőtlenségek
Title in English Functional equations and inequalities
Keywords in Hungarian Függvényegyenletek, egyenlőtlenségek, közepek, nemsima analízis
Keywords in English Functional equations, inequalities, means, nonsmooth analysis
Discipline
Mathematics (Council of Physical Sciences)100 %
Ortelius classification: Mathematical analysis
Panel Natural Sciences Committee Chairs
Department or equivalent Institute of Mathematics (University of Debrecen)
Participants Baják, Szabolcs
Bálintné Dascal, Judita
Bessenyei, Mihály
Boros, Zoltán
Burai, Pál József
Daróczy, Zoltán
Gilányi, Attila
Glavosits, Tamás
Gselmann, Eszter
Házy, Attila
Járai, Antal
Kocsis, Imre
Lajkó, Károly
Lakatos, Piroska
Losonczi, László
Lovas, Rezső László
Makó, Judit
Maksa, Gyula
Mészáros, Fruzsina
Molnár, Lajos
Nagy, Gergő
Száz, Árpád
Székelyhidi, László
Szilasi, József
Starting date 2010-07-01
Closing date 2014-12-31
Funding (in million HUF) 60.000
FTE (full time equivalent) 59.45
state closed project
Summary in Hungarian
A függvényegyenletek elméletének gyökerei az elmúlt századok olyan híres matematikusainak munkásságára nyúlnak vissza, mint Abel, Banach, Cauchy, D'Alembert, Darboux, Fréchet, Hamel, Lagrange, Ostrowski, Sierpinski, Steinhaus, Ulam. Az elmélet első rendszerezett áttekintését és összefoglalását 1961-ben megjelent Vorlesungen über Funktionalgleichungen und ihre Anwendungen című könyvében (angol kiadás: Lectures on functional equations and their applications, 1969) Aczél János végezte el. A Hölder és Jensen munkásságával kezdődő függvény-egyenlőtlenségek elméletnek első összefoglalása Godfrey Harold Hardy, John Edensor Littlewood és Pólya György 1934-es Inequalities című monográfiájában található. A függvényegyenlőtlenségek elméletének másik alapmunkája M. Kuczma 1985-ös An introduction to the theory of functional equations and inequalities című könyve.

Az egymáshoz szorosan kapcsolódó két terület az elmúlt évtizedek során jelentős fejlődésen ment keresztül. A tudományterület kutatói világszerte több könyvet és több ezer tudományos dolgozatot publikáltak. A debreceni függvényegyenletek kutatócsoport igen aktívan járult hozzá ehhez a fejlődéshez. A csoport tagjai az elmúlt 10 év során 4 könyvet és mintegy 380 tudományos dolgozatot publikáltak, 3 MTA doktori valamint 8 PhD értekezést készítettek és védtek meg. Rendszeresen vettek részt a terület fontos nemzetközi konferenciáin, ahol mintegy 400 előadást tartottak, emellett több nemzetközi konferenciát illetve szemináriumot szerveztek.

Általános célunk a 2010-től 2014-ig terjedő időszakban e kutatási tevékenység folytatása. Pályázatunk Kutatási tervében felsoroltuk a függvényegyenletek és -egyenlőtlenségek elméletnek azon részterületeit, amelyeken az elmúlt időszakban jelentős eredményeket értünk el, s kutatásainkat – reményeink szerint – sikerrel folytathatjuk e pályázat támogatásával.
Summary
The theory of functional equations has its roots in the works of the celebrated mathematicians of the last centuries, e.g., Abel, Banach, Cauchy, D'Alembert, Darboux, Fréchet, Hamel, Lagrange, Ostrowski, Sierpinski, Steinhaus, Ulam, etc. The first systematic study of the theory was carried out by János Aczél in his famous book Vorlesungen über Funktionalgleichungen und ihre Anwendungen in 1961 (English edition Lectures on functional equations and their applications, 1969). The theory of functional inequalities started with the works of Hölder, Jensen, and it was culminated first in the monograph Inequalities by G. H. Hardy, J. E. Littlewood, and Gy. Pólya. Another basic source of the theory of functional inequalities is the book An Introduction to the theory of functional equations and inequalities written by M. Kuczma in 1985.

In the last decades, these two intimately connected fields of mathematics has developed significantly. The experts of the discipline published several books and thousands of research papers worldwide. The research group of functional equationists in Debrecen actively contributed to this development. In the last 10 years, the members of the group published about 380 papers, 4 books, and defended 3 DSc (Doctor of Science) and 8 PhD dissertations. They regularly took part at the important international meetings of these fields and presented about 400 talks there, furthermore, they organized several international conferences and seminars.

Our general aim is to continue our research activity in 2010-2014 in a similar manner. In the Research Plan of our proposal we list the subfields of theories of the discipline in which we have recently achieved significant results and our research may be successfully continued if properly supported by the means of a research grant.





 

Final report

 
Results in Hungarian
A kutatás fő vizsgálatai függvényegyenletek és függvényegyenlőtlenségek általános elméleti kérdéseire, illetve ezek különféle matematikai, információelméleti, valószínűségszámítási, közgazdasági alkalmazásaira irányultak. Ezen belül foglalkoztunk összetett függvényeket tartalmazó függvényegyenletekkel, függvényegyenletek regularitás-elméletével, függvényegyenletekre és függvényegyenlőtlenségekre vonatkozó stabilitási problémákkal, középértékekre vonatkozó összehasonlítási, egyenlőségi és homogenitási problémákkal és invariancia egyenletekkel, a konvexitás magasabb rendű és különféle általánosításaival, a konvexitási tulajdonságok stabilitásával, valószínűségeloszlások függvényegyenletes jellemzésével, az információmértékek jellemzésével és stabilitásával, a spektrálszintézis és spektrálanalízis csoporton és hipercsoportokon való teljesülésének szükséges és elegendő feltételeinek teljesülésével, az alapvető függvényegyenletek hipercsoportokon való megoldásával, valamint operátoralgebrák, függvényalgebrák és kvantumstruktúrák megőrzési problémáinak vizsgálatával. A kutatócsoport 25 tagja kutatómunkája eredményeként 178 publikáció született, amelyből 5 monográfia, 2 szerkesztett könyv, 5 PhD és 1 habilitációs értekezés, 158 referált nemzetközi folyóiratcikk, 7 pedig referált konferenciakiadványban jelent meg. Az eredmények disszeminálása és a nemzetközi együttműködések intenzívebbé tétele érdekében a kutatócsoport 5 nemzetközi konferenciát is szervezett.
Results in English
The main directions of our research were to investigate general problems of the theory of functional equations and functional inequalities, and to apply these results to various questions of other branches of mathematics, information theory, probability theory, and economics. More specifically, we dealt with functional equations involving iterates of unknown functions, with regularity theory of functional equations, with stability problems of functional equations and inequalities, with comparison, equality, and homogeneity problems and invariance equation in various classes of means, with higher-order and other types of generalizations of convexity, with stability of convexity properties, with characterization and stability of information measures, with characterizations of probability distributions, with spectral synthesis and spectral analysis on groups and hypergroups, with solution of the basic functional equations on hypergroups, with preserver problems of operator and function algebras and quantum structures. The results of the 25 members of the research team were published in total in 178 publications: in 5 monographs, in 2 edited book, in 5 PhD and 1 habilitation dissertations, in 158 referred journal articles and in 7 referred conference proceedings articles. In order to disseminate or results and intensify our international cooperations, 5 international conferences were also organized.
Full text https://www.otka-palyazat.hu/download.php?type=zarobeszamolo&projektid=81402
Decision
Yes





 

List of publications

 
Glavosits, T.; Száz, Á.: The generalized infimal convolution can be used to naturally prove some dominated monotone additive extension theorems, Ann. Math. Sil., Vol. 25, 67-100, 2011
Glavosits, T.; Száz, Á.: Divisible and cancellable subsets of groupoids, Ann. Math. Inform., Vol. 43, 53-77, 2014
Glavosits, T.; Száz, Á.: Constructions and extensions of free and controlled additive relations, Handbook of Functional Equations, vol. 95 of Springer Optimization and Its Applications, 161-208, 2014
Száz, Á.: An extension of an additive selection theorem of Z. Gajda and R. Ger, Sci. Ser. A. Math. Sci. (N.S.), Vol. 24, 33-54, 2013
Száz, Á.: A particular Galois connection between relations and set functions, Acta Univ. Sapientiae Math., Vol. 6, 73-91, 2014
Száz, Á.: A relational reformulation of the Phelps-Cardwell lemma, Malaya J. Math., Vol. 2, 254-264, 2014
Száz, Á.: Generalizations of Galois and Pataki connections to relator spaces, J. Int. Math. Virt. Inst. Vol. 4, 43-75, 2014
Losonczi, L.: On homogeneous Páles means, Ann. Univ. Sci. Budapest. Sect. Comput., 41:103–117, 2013
Maksa, Gy.: On additive functions which differentiate elementary functions in some sense, Ann. Univ. Sci. Budapest. Sect. Comput., 41:125–136, 2013
Maksa, Gy.: On subgroups of the multiplicative group of the positive real numbers associated to information functions, Publ. Math. Debrecen, 84(1-2):253–258, 2014
Molnár, L.: A few conditions for a C*-algebra to be commutative, Abstr. Appl. Anal., pages Art. ID 705836, 4, 2014
Molnár, L.: Bilocal *-automorphisms of B(H), Arch. Math. (Basel), 102(1):83–89, 2014
Molnár, L.: Jordan triple endomorphisms and isometries of spaces of positive definite matrices, Linear Multilinear Algebra, 63(1):12–33, 2015
Molnár, L.; Nagy, G.: Transformations on density operators that leave the Holevo bound invariant, Internat. J. Theoret. Phys., 53(10):3273–3278, 2014
Molnár, L.; Szokol, P.: Kolmogorov-Smirnov isometries of the space of generalized distribution functions, Math. Slovaca, 64(2):433–444, 2014
Molnár, L.; Szokol, P.: Transformations on positive definite matrices preserving generalized distance measures, Linear Algebra Appl., 466:141–159, 2015
Nagy, G.: Preservers for the p-norm of linear combinations of positive operators, Abstr. Appl. Anal., pages Art. ID 434121, 9, 2014
Páles, Zs.: On Wright- but not Jensen-convex functions of higher order, Ann. Univ. Sci. Budapest. Sect. Comput., 41:227–234, 2013
Páles, Zs.; Székelyhidi, L.: Laudation to Zoltán Daróczy, Ann. Univ. Sci. Budapest. Sect. Comput., 40:9–20, 2013
Száz, Á.: An easy to remember, economic approach to the Riccati differential equation, Math. Student, 82(1-4):165–176, 2013
Száz, Á.: An instructive treatment and some natural extensions of a set-valued function of Páles, Math. Pannon., 24(1):77–108, 2013
Száz, Á.: Inclusions for compositions and box products of relations, J. Int. Math. Virtual Inst., 3:97–125, 2013
Székelyhidi, L.: A characterization of exponential polynomials, Publ. Math. Debrecen, 83(4):757–771, 2013
Székelyhidi, L.: The Levi-Civita equation, vector modules and spectral synthesis, Recent developments in functional equations and inequalities, volume 99 of Banach Center Publ., page 193–206. Polish Acad. Sci. Inst. Math., Warsaw, 2013
Székelyhidi, L.: Annihilator methods in discrete spectral synthesis, Acta Math. Hungar., 143(2):351–366, 2014
Székelyhidi, L.: Characterization of exponential polynomials on commutative hypergroups, Ann. Funct. Anal., 5(2):53–60, 2014
Székelyhidi, L.: Harmonic and spectral analysis, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014
Székelyhidi, L.: On Fréchet’s functional equation, Monatsh. Math., 175(4):639–643, 2014
Székelyhidi, L.; Vajday, L.: On conditional functional equations with applications on hypergroups, Ann. Univ. Sci. Budapest. Sect. Comput., 41:323–332, 2013
L. Székelyhidi: Spectral synthesis problems on hypergroups, Ann. Univ. Sci. Budapest. Sect. Comput. Vol. 39, 439–447., 2013
A. Fošner, R. Ger, A. Gilányi, M. S. Moslehian: On linear functional equations and completeness of normed spaces, Banach J. Math. Anal. Vol. 7 (1), 196–200, 2013
Páles, Zs.; Zeidan, V.: V-Jacobian and V-co-Jacobian for Lipschitzian maps, Discrete Contin. Dyn. Syst. Vol. 9 (2), 623–646, 2011
Baják, Sz.; Páles, Zs.: Computer aided solution of the invariance equation for two-variable Stolarsky means, Appl. Math. Comput. Vol. 216, 3219–3227, 2010
Bessenyei, M.: Functional equations and finite groups of substitutions, Amer. Math. Monthly, Vol. 117 (10), 921–927, 2010
Boros, Z.; Gselmann, E.: Hyers–Ulam stability of derivations and linear functions, Aequationes Math., Vol 80 (1-2), 13–25, 2010
Daróczy, Z.; Dascăl, J.: On the equality problem of conjugate means, Results Math., Vol. 58 (1-2), 69–79, 2010
Figula, Á.; Száz, Á.: Graphical relationships between the infimum and intersection convolutions, Math. Pannon., Vol. 21(1), 23–35, 2010
Gilányi, A.; Nagatou, K.; Volkmann, P.: Stability of a functional equation coming from the characterization of the absolute value of additive functions, Ann. Funct. Anal., Vol. 1 (2), 1-6, 2010
Gselmann, E.: Stability of the entropy equation, Publ. Math. Debrecen, Vol. 77, 201–210, 2010
Gselmann, E.: On the stability of the modified entropy equation, Results Math. Vol. 58, 255–268, 2010
Gselmann, E.; Száz, A.: An instructive treatment of a generalization of Găvruţă's stability theorem, Sarajevo J. Math., Vol. 6 (18), 3–21, 2010
Házy, A.: Bernstein – Doetsch type results for h–convex functions, Math. Inequal. Appl., Vol. 14 (3), 499–508, 2011
Járai, A.: On the measurable solution of a functional equation, Aequationes Math., Vol. 80 (1-2), 131–139, 2010
Losonczi, L.: Production functions having the CES property, Acta Math. Acad. Paedagog. Nyházi. (N.S.), Vol. 26 (1), 113–125, 2010
Lovas, R. L.; Szilasi, J.: Homotheties of Finsler manifolds, SUT J. Math., Vol. 46 (1), 23–34, 2010
Makó, J.; Páles, Zs.: Approximate convexity of Takagi type functions, J. Math. Anal. Appl., Vol 369, 545–554, 2010
Maksa, Gy.; Varga, A.: The equivalence of two functional equations involving the arithmetic mean, the geometric mean and their Gauss composition, Aequationes Math., Vol. 80, 173–179, 2010
Mészáros, F.: Függvényegyenletek és karakterizációs problémák, Debreceni Egyetem, 2010
Páles, Zs.; Zeidan, V.: Co-Jacobian for Lipschitzian maps, Set-Valued and Variational Anal., Vol. 18 (1), 57–78, 2010
Száz, Á.: Foundations of the theory of vector relators, Adv. Stud. Contemp. Math. (Kyungshang), Vol. 20 (1), 139–195, 2010
Száz, Á.: The intersection convolution of relations, Creat. Math. Inform., Vol. 19 (2), 209–217, 2010
Székelyhidi, L.; Vajday, L.: Spectral analysis on commutative hypergroups, Aequationes Math., Vol. 80, 223–226, 2010
Bessenyei, M.; Kézi, Cs. G.: Functional equations and group substitutions, Linear Algebra Appl., Vol. 434 (6), 1525–1531, 2011
Burai, P.; Házy, A.: On approximately h-convex functions, J. Convex Anal., Vol. 18 (2), 447–454, 2011
Daróczy, Z.: On the equality and comparison problem of a class of mean values, Aequationes Math., Vol. 81 (3), 201–208, 2011
Gilányi, A.; Troczka-Pawelec, K.: Regularity of weakly subquadratic functions, J. Math. Anal. Appl., Vol. 382, 814--821, 2011
Glavosits, T.; Száz, Á.: A Hahn-Banach type generalization of the Hyers-Ulam theorem, An. Şt. Univ. Ovidius Constanţa, Seria Mat., Vol. 19 (1), 139–144, 2011
Lajkó, K.; Mészáros, F.: Functional equations and characterization problems, VDM Verlag Dr. Müller, 2011
Losonczi, L.; Páles, Zs.: Equality of two-variable functional means generated by different measures, Aequationes Math., Vol. 81 (1), 31–53, 2011
Losonczi, L.; Páles, Zs.: Minkowski-type inequalities for means generated by two functions and a measure, Publ. Math. Debrecen, Vol. 78 (3-4), 743–753, 2011
Maksa, Gy.; Páles, Zs.: The equality case in some recent convexity inequalities, Opuscula Math. Vol. 31 (2), 269-277, 2011
Makó, J.; Páles, Zs.: Strengthening of strong and approximate convexity, Acta Math. Hungar., Vol. 132 (1-2), 78-91, 2011
Molnár, L.: Order automorphisms on positive definite operators and a few applications, Linear Algebra Appl., Vol. 434, 2158-2169, 2011
Molnár, L.: Lévy isometries of the space of probability distribution functions, J. Math. Anal. Appl., Vol. 380, 847-852., 2011
Molnár, L.: Kolmogorov-Smirnov isometries and affine automorphisms of spaces of distribution functions, Cent. Eur. J. Math., Vol. 9, 789-796, 2011
Nikodem, K.; Páles, Zs.: Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal., Vol. 5 (1), 83-87, 2011
Páles, Zs.: On the equality of quasi-arithmetic means and Lagrangian means, J. Math. Anal. Appl., Vol. 382 (1), 86-96, 2011
Száz, Á.: The infimal convolution can be used to derive extension theorems from the sandwich ones, Acta Sci. Math. (Szeged), Vol. 76, 489--499, 2010
Száz, Á.: Altman type generalizations of ordering and maximality principles of Brézis, Browder and Brondsted, Adv. Stud. Contemp. Math. (Kyungshang), Vol. 20, 595--620, 2010
Glavosits, T.; Száz, Á.: The infimal convolution can be used to easily prove the classical Hahn-Banach theorem, Rostock. Math. Kolloq., Vol. 65, 71--83, 2010
Száz, Á.: Set theoretic operations on box and totalization relations, Int. J. Math. Sci. Appl., Vol. 1, 19--41, 2011
Lajkó, K.; Maksa, Gy.; Páles, Zs.: Report of Meeting: Researches in Didactics of Mathematics and Computer Sciences (January 21 – 23, 2010, Debrecen, Hungary), Teaching Math. Comp. Sci. 8 (1), 177–195., 2010
Brzdęk, J.; Chudziak, J.; Páles, Zs.: A fixed point approach to stability of functional equations, Nonlinear Anal., Vol. 74 (17), 6728–6732., 2011
Burai, P.; Házy, A.; Juhász, T.: On approximately Breckner $s$-convex functions, Control Cybernet. Vol. 40 (1), 91–99., 2011
Daróczy, Z.: Antal Járai turned 60, Annales Univ. Sci. Budapest, Sect. Comp., Vol. 35, 11–12., 2011
Daróczy, Z.; Dascăl, J.: On conjugate means of n variables, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 34, 87-94., 2011
Daróczy, Z.; Dascăl, J.: A functional equation with a symmetric binary operation, Aequationes Math., Vol. 82 (3), 291–297, 2011
Glavosits, T.; Kézi, Cs. G.: On the domain of oddness of an infimal convolution, Math. Notes, Miskolc, Vol. 12 (1), 31–40., 2011
Gselmann, E.: Az információelmélet néhány függvényegyenletének stabilitása (Stability of Some Functional Equations Stemming from the Theory of Information), (in Hungarian), Institute of Mathematics, University of Debrecen, 2011
Gselmann, E.: Entropy functions and functional equations, Math. Commun., Vol. 16 (2), 347–357., 2011
Gselmann, E.; Maksa, Gy.: A characterization of the relative entropies, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 35, 151-162., 2011
Molnár, L.: Continuous maps on matrices transforming geometric mean to arithmetic mean, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 35, 217-222., 2011
Molnár, L.: Maps preserving general means of positive operators, Electron. J. Linear Algebra, Vol. 22, 864–874., 2011
Molnár, L.; Timmermann, W.: Transformations on bounded observables preserving measure of compatibility, Int. J. Theor. Phys., Vol. 50 (12), 3857–3863., 2011
Száz, Á.: Sets and posets with inversions, Publ. Inst. Math. (Beograd) (N. S.), Vol. 90, 111–123., 2011
Székelyhidi, L.: Fourier transform for mean periodic functions, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 35, 267–283., 2011
Szilasi, J.; Lovas, R. L.; Kertész, D. Cs.: Several ways to a Berwald manifold – and some steps beyond, Extr. Math., Vol. 26, 89–130, 2011
Szilasi, J.; Tóth, A.: Conformal vector fields on Finsler manifolds, Commun. Math., Vol. 19, 149–168., 2011
Bessenyei, M.: Inequalities and Separation Theorems for Generalized Convex Functions, Institute of Mathematics, University of Debrecen, 2011
Dascăl, J.: Mean values and functional equations, University of Luxembourg, 2012
Bessenyei, M.; Páles, Zs.: Separation by linear interpolation families, J. Nonlinear Convex Anal., Vol. 13 (1), 49-56., 2012
Dolinar, G.; Molnár, L.: Sequential endomorphisms of finite-dimensional Hilbert space effect algebras, J. Phys. A, Math. Theor., Vol. 45 (6), Article ID 065207, 2012
Fechner, W.; Gselmann, E.: General and alien solutions of a functional equation and of a functional inequality, Publ. Math. Debrecen, Vol. 80 (1-2), 143–154., 2012
Gselmann, E.: Notes on the characterization of derivations, Acta Sci. Math. (Szeged), Vol. 78 (1-2), 137–145., 2012
Hatori, O.; Molnár, L.: Isometries of the unitary group, Proc. Amer. Math. Soc., Vol. 140, 2127–2140., 2012
Gilányi, A.; Kézi, Cs. G.; Troczka-Pawelec, K.: On two different concepts of subquadraticity, In Inequalities and Applications 2010, Birkhäuser (C. Bandle, A. Gilányi, L. Losonczi, M. Plum, eds.), volume 161, 209–215., 2012
Járai, A.; Mészáros, F.; Lajkó, K.: On measurable functions satisfying multiplicative type functional equations almost everywhere, In Inequalities and Applications 2010, Birkhäuser (C. Bandle, A. Gilányi, L. Losonczi, M. Plum, eds.), volume 161, 241-253., 2012
Makó, J.; Nikodem, K.; Páles, Zs.: On strong $(\alpha,F)$-convexity, Math. Inequal. Appl., Vol. 15 (2), 289–299., 2012
Makó, J.; Páles, Zs.: On $\varphi$-convexity, Publ. Math. Debrecen, Vol. 80 (1-2), 107–126., 2012
Makó, J.; Páles, Zs.: Implications between approximate convexity properties and approximate Hermite–Hadamard inequalities, Cent. Eur. J. Math., Vol. 10 (3) 1017–1041., 2012
Makó, J.; Páles, Zs.: Korovkin type theorems and approximate Hermite–Hadamard inequalities, J. Approx. Theory, Vol. 164 (8), 1111-1142., 2012
Molnár, L.; Nagy, G.: Isometries and relative entropy preserving maps on density operators, Linear Multilinear Algebra, Vol. 60 (1), 93-108., 2012
Molnár, L.; Šemrl, P.: Transformations of the unitary group on a Hilbert space, J. Math. Anal. Appl., Vol. 388 (2), 1205–1217., 2012
Székelyhidi, L.: Polynomial functions and spectral synthesis on Abelian groups, Banach J. Math. Anal., Vol. 6 (1), 124–131., 2012
Szilasi, J.; Tóth, A.: Curvature collineations in spray manifolds, Balkan J. Geom. Appl., Vol. 17 (2), 104-114., 2012
Bandle, C.; Gilányi, A.; Losonczi, L.; Plum, M.: Inequalities and Applications 2010, International Series of Numerical Mathematics, Vol. 161, Birkhäuser, 2012
Maksa, Gy.; Páles, Zs.: Wigner’s theorem revisited, Publ. Math. Debecen Vol. 81 (1-2), 243-249, 2012
Páles, Zs.; Petre, I.-R.: Iterative fixed point theorems in E-metric spaces, Acta Math. Hungar. Vol. 140(1-2), 134–144, 2013
Bessenyei, M.; Horváth, G.; Kézi, Cs. G.: Functional equations on finite groups of substitutions, Expo. Math. Vol. 30 (3), 283–294, 2012
Burai, P.; Dascăl, J.: The equality problem in the class of conjugate means, Aequationes Math. Vol. 84 (1-2), 77–90, 2012
Dascăl, J.; Jarczyk, J.: Computer assisted solution of an equality problem of mean values, Appl. Math. Comput. Vol. 219 (2), 475–481, 2012
Baják, Sz.: Invariance Equations for Two-Variable Means, Institute of Mathematics, University of Debrecen, 2012
Hannusch, C.; Lakatos, P.: Construction of self-dual radical 2-codes of given distance, Discrete Math. Algorithm. Appl. Vol. 4 (4), Art. no. 1250052, 13 pp., 2012
Hatori, O.; Hirasawa, G.; Miura, T.; Molnár, L.: Isometries and maps compatible with inverted Jordan triple products on groups, Tokyo J. Math. Vol. 35 (2), 385–410, 2012
Házy, A.: Bernstein-Doetsch type results for (k,h)-convex functions, Miskolc Math. Notes Vol. 13 (2), 325–336, 2012
Kocsis, I.: On the linear dependence of a finite set of additive functions, Result. Math. Vol. 62 (1-2), 67–71, 2012
Lajkó, K.; Mészáros, F.: Multiplicative type functional equations arising from characterization problems, Aequationes Math. Vol. 83 (3), 199–208, 2012
Száz, Á.: The Hyers–Ulam and Hahn–Banach theorems and some elementary operations on relations motivated by their set-valued generalizations, In Nonlinear analysis, Springer, volume 68, 631–705., 2012
Száz, Á.: A common generalization of the postman, radial, and river metrics, Rostock. Math. Kolloq. Vol. 67, 89–125, 2012
Száz, Á.: Galois-type connections and continuities of pairs of relations, J. Int. Math. Virt. Inst. Vol 2, 39–66, 2012
Székelyhidi, L.: Noetherian rings of polynomial functions on Abelian groups, Aequationes Math. Vol. 84 (1-2), 41–50, 2012
Székelyhidi, L.: Spectral analysis and spectral synthesis, In Nonlinear analysis, Springer, volume 68, 707–719., 2012
Székelyhidi, L.; Vajday, L.: Spectral analysis and moment functions, Jour. Inf. Math. Sci. Vol. 4 (2), 185–188, 2012
Székelyhidi, L.; Vajday, L.: A moment problem on some types of hypergroups, Ann. Funct. Anal. Vol. 3 (2), 58–65, 2012
Székelyhidi, L.; Vajday, L.: Functional equations on the SU(2)-hypergroup, Math. Pannon. Vol. 23 (2), 187–193, 2012
Szilasi, J.; Tamássy, L.: Generalized Berwald spaces as affine deformations of Minkowski spaces, Rev. Roumaine Math. Pures Appl. Vol. 57 (2), 165–178, 2012
Székelyhidi, L.: Functional Equations on Hypergroups, World Scientific Publishing Co. Pte. Ltd., 2013
Száz, Á.: Lower semicontinuity properties of relations in relator spaces, Adv. Stud. Contemp. Math. (Kyungshang) Vol. 23, 107–158, 2013
Molnár, L.; Nagy, G.; Szokol, P.: Maps on density operators preserving quantum f-divergences, Quantum Inf. Process Vol. 12, 2309–2323, 2013
Nagy, G.: Isometries on positive operators of unit norm, Publ. Math. Debrecen Vol. 82 (1), 183–192, 2013
Makó, J.; Páles, Zs.: On approximately convex Takagi type functions, Proc. Amer. Math. Soc. Vol. 141 (6), 2069–2080, 2013
Makó, J.: On Approximately Convex Functions, Institute of Mathematics, University of Debrecen, 2013
Lajkó, K.; Mészáros, F.: General solution of a functional equation arisen from characterization problems, Annales Univ. Sci. Budapest., Sect. Comp. Vol. 39, 291–302, 2013
Gselmann, E.: Derivations and linear functions along rational functions, Monatsh. Math. Vol. 169 (3-4), 355–370, 2013
Dolinar, G.; Molnár, L.: Automorphisms for the logarithmic product of positive semidefinite operators, Linear Multilinear Algebra Vol. 61 (2), 161–169, 2013
Daróczy, Z.; Páles, Zs.: On an elementary inclusion problem and generalized weighted quasi-arithmetic means, Banach Center Publ. Vol. 99, 45–54, 2013
Daróczy, Z; Maksa, Gy.: A functional equation involving comparable weighted quasi-arithmetic means, Acta Math. Hungar. Vol. 138 (1-2), 147–155, 2013
Burai, P.: Matkowski–Sutô type equation on symmetrized weighted quasi-arithmetic means, Results Math. Vol. 63 (1-2), 397–408, 2013
Bessenyei, M.; Szokol, P.: Separation by convex interpolation families, J. Convex Anal. Vol. 20 (4), 2013
Bessenyei, M.; Szokol, P.: Convex separation by regular pairs, J. Geom. Vol. 104 (1), 45–56, 2013
Bessenyei, M.; Kézi, Cs. G.: Solving functional equations via finite substitutions, Aequationes Math. Vol. 85 (3), 593–600, 2013
Baják, Sz.; Páles, Zs.: Solving invariance equations involving homogeneous means with the help of computer, Appl. Math. Comput. Vol. 219 (11), 6297–6315, 2013
Székelyhidi, L.: Spectral synthesis problems on hypergroups, Ann. Univ. Sci. Budapest. Sect. Comput. Vol. 39, 439–447., 2013
Fošner, A.; Ger, R.; Gilányi, A.; Moslehian, M. S.: On linear functional equations and completeness of normed spaces, Banach J. Math. Anal. Vol. 7 (1), 196–200, 2013
Borus, G.; Gilányi, A.: Solving systems of linear functional equations with computer, 4th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 559–562, 2013
Gselmann, E.; Maksa, Gy.: Some functional equations related to the characterizations of information measures and their stability, In Springer Optimization and Its Applications, Springer Verlag, volume 96, 199–243., 2014
Gselmann, E.: Stability and information functions. Stability of some functional equations stemming from the theory of information, Scholars' Press, 2013
Szilasi, J.; Lovas, R. L.; Kertész, D. Cs.: Connections, Sprays and Finsler Structures, World Scientific Publishing Co. Pte. Ltd., 2014
Lajkó, K.; Mészáros, F.: Special cases of the generalized Hosszú equation on interval, Aequationes Math., Vol. 89, 2015
Gselmann, E.: On a discrete version of the wave equation, Aequationes Math., Vol. 89, 2015
Székelyhidi, L.: A functional equation for exponential polynomials, Aequationes Math., Vol. 89, 2015
Boros, Z.; Fechner, W.: An alternative equation for polynomial functions, Aequationes Math., Vol. 89, 2015
Gselmann, E.: Jordan triple mappings on positive definite matrices, Aequationes Math., Vol. 89, 2015
Gilányi, A.; Merentes, N.; Nikodem, K.; Páles, Zs.: Characterizations and decomposition of strongly Wright-convex functions of higher order, Opuscula Math., Vol. 35 (1), 37–46, 2015
Jarczyk, W.; Páles, Zs.: Convexity and a Stone-type theorem for convex sets in abelian semigroup setting, Semigroup Forum, Vol. 90(1), 207-219, 2015
Maksa, Gy.; Páles, Zs.: Convexity with respect to families of means, Aequationes Math., 2015
Botelho, F. and Jamison, J. and Molnár, L.: Algebraic reflexivity of isometry groups and automorphism groups of some operator structures, J. Math. Anal. Appl., Vol. 408 (1), 177–195, 2013
Burai, P.; Házy, A.; Juhász, T.: A composite functional equation from algebraic aspect, Aequationes Math., Vol. 86 (1-2), 57–64, 2013
Botelho, F.; Jamison, J.; Molnár, L.: Surjective isometries on Grassmann spaces, J. Funct. Anal., Vol. 265 (10), 2226–2238, 2013
Székelyhidi, L.: Exponential polynomials on commutative hypergroups, Arch. Math. (Basel), Vol. 101 (4), 341–347, 2013
Molnár, L.: Jordan triple endomorphisms and isometries of unitary groups, Linear Algebra Appl., Vol. 439 (11), 3518–3531, 2013
Boros, Z. and Nagy, N.: Approximately convex functions, Ann. Univ. Sci. Budapest. Sect. Comput., Vol. 40, 143–150, 2013
Burai, P.: Monotone operators and local-global minimum property of nonlinear optimization problems, Ann. Univ. Sci. Budapest. Sect. Comput., Vol. 40, 151–158, 2013
Burai, P.; Jarczyk, J.: Conditional homogeneity and translativity of Makó-Páles means, Ann. Univ. Sci. Budapest. Sect. Comput., Vol. 40, 159–172, 2013
Gselmann, E.: On some classes of partial difference equations, Ann. Univ. Sci. Budapest. Sect. Comput., Vol. 40, 285–294, 2013
Járai, A.: Regularity of functional equations with few variables, Ann. Univ. Sci. Budapest. Sect. Comput., Vol. 40, 337–351, 2013
Lajkó, K.; Mészáros, F.; Pap, Gy.: Characterization of bivariate distributions with conditionals of the same type, Ann. Univ. Sci. Budapest. Sect. Comput., Vol. 41, 73–84, 2013
Beneduci, R.; Molnár, L.: On the standard K-loop structure of positive invertible elements in a C*-algebra, J. Math. Anal. Appl., 420(1):551–562, 2014
Brzdęk, J.; Chmieliński, J.; Ciepliński, K.; Ger, R.; Páles, Zs.; Zdun, M. C.: Recent developments in functional equations and inequalities. Based on the 14th international conference on functional equations and inequalities (ICFEI) dedicated to the memory of Marek Kuczma, Banach Center Publications, Polish Academy of Sciences, Institute of Mathematics, 2013
Burai, P.: Necessary and sufficient condition on global optimality without convexity and second order differentiability, Optim. Lett., 7(5):903–911, 2013
Burai, P.: Local-global minimum property in unconstrained minimization problems, J. Optim. Theory Appl., 162(1):34–46, 2014
Daróczy, Z: On functional equations involving means, Publ. Math. Debrecen, 84(1-2):221–228, 2014
Gehér, Gy. P.; Nagy, G.: Maps on classes of Hilbert space operators preserving measure of commutativity, Linear Algebra Appl., 463:205–227, 2014
González, C.; Nikodem, K.; Páles, Zs.; Roa, G.: Bernstein--Doetsch type theorems for set-valued maps of strongly and approximately convex and concave type, Publ. Math. Debrecen, 84(1-2):229–252, 2014
Gselmann, E.: Approximate derivations of order n, Acta Math. Hungar., 144(1):217–226, 2014
Gselmann, E.: Stability properties in some classes of second order partial differential equations, Results Math., 65(1- 2):95–103, 2014
Hatori, O.; Molnár, L.: Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in C*-algebras, J. Math. Anal. Appl., 409(1):158–167, 2014
Horváth, G.; Székelyhidi, L.; Wilkens, B.: Non-synthesizable varieties, J. Math. Anal. Appl., 417(1):394–399, 2014
Gy. Maksa, Zs. Páles: Wigner’s theorem revisited, Publ. Math. Debecen Vol. 81 (1-2), 243-249, 2012
Zs. Páles, I.-R. Petre: Iterative fixed point theorems in E-metric spaces, Acta Math. Hungar. Vol. 140(1-2), 134–144, 2013
M. Bessenyei, G. Horváth, Cs. G. Kézi: Functional equations on finite groups of substitutions, Expo. Math. Vol. 30 (3), 283–294, 2012
P. Burai, J. Dascăl: The equality problem in the class of conjugate means, Aequationes Math. Vol. 84 (1-2), 77–90, 2012
J. Dascăl, J. Jarczyk: Computer assisted solution of an equality problem of mean values, Appl. Math. Comput. Vol. 219 (2), 475–481, 2012
Sz. Baják: Invariance Equations for Two-Variable Means, Institute of Mathematics, University of Debrecen, 2012
C. Hannusch, P. Lakatos: Construction of self-dual radical 2-codes of given distance, Discrete Math. Algorithm. Appl. Vol. 4 (4), Art. no. 1250052, 13 pp., 2012
O. Hatori, G. Hirasawa, T. Miura, L. Molnár: Isometries and maps compatible with inverted Jordan triple products on groups, Tokyo J. Math. Vol. 35 (2), 385–410, 2012
A. Házy: Bernstein-Doetsch type results for (k,h)-convex functions, Miskolc Math. Notes Vol. 13 (2), 325–336, 2012
I. Kocsis: On the linear dependence of a finite set of additive functions, Result. Math. Vol. 62 (1-2), 67–71, 2012
K. Lajkó, F. Mészáros: Multiplicative type functional equations arising from characterization problems, Aequationes Math. Vol. 83 (3), 199–208, 2012
Á. Száz: The Hyers–Ulam and Hahn–Banach theorems and some elementary operations on relations motivated by their set-valued generalizations, In Nonlinear analysis, Springer, volume 68, 631–705., 2012
Á. Száz: A common generalization of the postman, radial, and river metrics, Rostock. Math. Kolloq. Vol. 67, 89–125, 2012
Á. Száz: Galois-type connections and continuities of pairs of relations, J. Int. Math. Virt. Inst. Vol 2, 39–66, 2012
L. Székelyhidi: Noetherian rings of polynomial functions on Abelian groups, Aequationes Math. Vol. 84 (1-2), 41–50, 2012
L. Székelyhidi: Spectral analysis and spectral synthesis, In Nonlinear analysis, Springer, volume 68, 707–719., 2012
L. Székelyhidi, L. Vajday: Spectral analysis and moment functions, Jour. Inf. Math. Sci. Vol. 4 (2), 185–188, 2012
L. Székelyhidi, L. Vajday: A moment problem on some types of hypergroups, Ann. Funct. Anal. Vol. 3 (2), 58–65, 2012
L. Székelyhidi, L. Vajday: Functional equations on the SU(2)-hypergroup, Math. Pannon. Vol. 23 (2), 187–193, 2012
J. Szilasi, L. Tamássy: Generalized Berwald spaces as affine deformations of Minkowski spaces, Rev. Roumaine Math. Pures Appl. Vol. 57 (2), 165–178, 2012
L. Székelyhidi: Functional Equations on Hypergroups, World Scientific Publishing Co. Pte. Ltd., 2013
Á. Száz: Lower semicontinuity properties of relations in relator spaces, Adv. Stud. Contemp. Math. (Kyungshang) Vol. 23, 107–158, 2013
L. Molnár, G. Nagy, P. Szokol: Maps on density operators preserving quantum f-divergences, Quantum Inf. Process Vol. 12, 2309–2323, 2013
G. Nagy: Isometries on positive operators of unit norm, Publ. Math. Debrecen Vol. 82 (1), 183–192, 2013
J. Makó, Zs. Páles: On approximately convex Takagi type functions, Proc. Amer. Math. Soc. Vol. 141 (6), 2069–2080, 2013
J. Makó, Zs. Páles: Approximate Hermite–Hadamard type inequalities for approximately convex functions, Math. Inequal. Appl. Vol. 16 (2), 507–526, 2013
J. Makó: On Approximately Convex Functions, Institute of Mathematics, University of Debrecen, 2013
K. Lajkó, F. Mészáros: General solution of a functional equation arisen from characterization problems, Annales Univ. Sci. Budapest., Sect. Comp. Vol. 39, 291–302, 2013
E. Gselmann: Derivations and linear functions along rational functions, Monatsh. Math. Vol. 169 (3-4), 355–370, 2013
G. Dolinar, L. Molnár: Automorphisms for the logarithmic product of positive semidefinite operators, Linear Multilinear Algebra Vol. 61 (2), 161–169, 2013
Z. Daróczy, Zs. Páles: On an elementary inclusion problem and generalized weighted quasi-arithmetic means, Banach Center Publ. Vol. 99, 45–54, 2013
Z. Daróczy, Gy. Maksa: A functional equation involving comparable weighted quasi-arithmetic means, Acta Math. Hungar. Vol. 138 (1-2), 147–155, 2013
P. Burai: Matkowski–Sutô type equation on symmetrized weighted quasi-arithmetic means, Results Math. Vol. 63 (1-2), 397–408, 2013
M. Bessenyei, P. Szokol: Separation by convex interpolation families, J. Convex Anal. Vol. 20 (4), 2013
M. Bessenyei, P. Szokol: Convex separation by regular pairs, J. Geom. Vol. 104 (1), 45–56, 2013
M. Bessenyei, Cs. G. Kézi: Solving functional equations via finite substitutions, Aequationes Math. Vol. 85 (3), 593–600, 2013
Sz. Baják, Zs. Páles: Solving invariance equations involving homogeneous means with the help of computer, Appl. Math. Comput. Vol. 219 (11), 6297–6315, 2013
P. Burai, A. Házy: On approximately h-convex functions, J. Convex Anal., Vol. 18 (2), 447–454, 2011
Z. Daróczy: On the equality and comparison problem of a class of mean values, Aequationes Math., Vol. 81 (3), 201–208, 2011
A. Gilányi, K. Troczka-Pawelec: Regularity of weakly subquadratic functions, J. Math. Anal. Appl., Vol. 382, 814--821, 2011
T. Glavosits, Á. Száz: A Hahn-Banach type generalization of the Hyers-Ulam theorem, An. Şt. Univ. Ovidius Constanţa, Seria Mat., Vol. 19 (1), 139–144, 2011
F. Mészáros, K. Lajkó: Functional equations and characterization problems, VDM Verlag Dr. Müller, 2011
L. Losonczi, Zs. Páles: Equality of two-variable functional means generated by different measures, Aequationes Math., Vol. 81 (1), 31–53, 2011
L. Losonczi, Zs. Páles: Minkowski-type inequalities for means generated by two functions and a measure, Publ. Math. Debrecen, Vol. 78 (3-4), 743–753, 2011
Gy. Maksa, Zs. Páles: The equality case in some recent convexity inequalities, Opuscula Math. Vol. 31 (2), 269-277, 2011
J. Makó, Zs. Páles: Strengthening of strong and approximate convexity, Acta Math. Hungar., Vol. 132 (1-2), 78-91, 2011
L. Molnár: Order automorphisms on positive definite operators and a few applications, Linear Algebra Appl., Vol. 434, 2158-2169, 2011
L. Molnár: Lévy isometries of the space of probability distribution functions, J. Math. Anal. Appl., Vol. 380, 847-852., 2011
L. Molnár: Kolmogorov-Smirnov isometries and affine automorphisms of spaces of distribution functions, Cent. Eur. J. Math., Vol. 9, 789-796, 2011
K. Nikodem, Zs. Páles: Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal., Vol. 5 (1), 83-87, 2011
Zs. Páles: On the equality of quasi-arithmetic means and Lagrangian means, J. Math. Anal. Appl., Vol. 382 (1), 86-96, 2011
Á. Száz: The infimal convolution can be used to derive extension theorems from the sandwich ones, Acta Sci. Math. (Szeged), Vol. 76, 489--499, 2010
Á. Száz: Altman type generalizations of ordering and maximality principles of Brézis, Browder and Brondsted, Adv. Stud. Contemp. Math. (Kyungshang), Vol. 20, 595--620, 2010
T. Glavosits, Á. Száz: The infimal convolution can be used to easily prove the classical Hahn-Banach theorem, Rostock. Math. Kolloq., Vol. 65, 71--83, 2010
Á. Száz: Set theoretic operations on box and totalization relations, Int. J. Math. Sci. Appl., Vol. 1, 19--41, 2011
K. Lajkó, Gy. Maksa, Zs. Páles: Report of Meeting: Researches in Didactics of Mathematics and Computer Sciences (January 21 – 23, 2010, Debrecen, Hungary), Teaching Math. Comp. Sci. 8 (1), 177–195., 2010
J. Brzdęk, J. Chudziak, Zs. Páles: A fixed point approach to stability of functional equations, Nonlinear Anal., Vol. 74 (17), 6728–6732., 2011
P. Burai, A. Házy, T. Juhász: On approximately Breckner $s$-convex functions, Control Cybernet. Vol. 40 (1), 91–99., 2011
Z. Daróczy: Antal Járai turned 60, Annales Univ. Sci. Budapest, Sect. Comp., Vol. 35, 11–12., 2011
Z. Daróczy, J. Dascăl: On conjugate means of $n$ variables, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 34, 87-94., 2011
Z. Daróczy, J. Dascăl,: A functional equation with a symmetric binary operation, Aequationes Math., Vol. 82 (3), 291–297, 2011
T. Glavosits, Cs. G. Kézi: On the domain of oddness of an infimal convolution, Math. Notes, Miskolc, Vol. 12 (1), 31–40., 2011
E. Gselmann: Az információelmélet néhány függvényegyenletének stabilitása (Stability of Some Functional Equations Stemming from the Theory of Information), (in Hungarian), Institute of Mathematics, University of Debrecen, 2011
E. Gselmann: Entropy functions and functional equations, Math. Commun., Vol. 16 (2), 347–357., 2011
E. Gselmann, Gy. Maksa: A characterization of the relative entropies, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 35, 151-162., 2011
L. Molnár: Continuous maps on matrices transforming geometric mean to arithmetic mean, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 35, 217-222., 2011
L. Molnár: Maps preserving general means of positive operators, Electron. J. Linear Algebra, Vol. 22, 864–874., 2011
L. Molnár, W. Timmermann: Transformations on bounded observables preserving measure of compatibility, Int. J. Theor. Phys., Vol. 50 (12), 3857–3863., 2011
Á. Száz: Sets and posets with inversions, Publ. Inst. Math. (Beograd) (N. S.), Vol. 90, 111–123., 2011
L. Székelyhidi: Fourier transform for mean periodic functions, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 35, 267–283., 2011
J. Szilasi, L. R. Lovas, D. Cs. Kertész: Several ways to a Berwald manifold – and some steps beyond, Extr. Math., Vol. 26, 89–130, 2011
J. Szilasi, A. Tóth: Conformal vector fields on Finsler manifolds, Commun. Math., Vol. 19, 149–168., 2011
M. Bessenyei: Inequalities and Separation Theorems for Generalized Convex Functions, Institute of Mathematics, University of Debrecen, 2011
J. Dascăl: Mean values and functional equations, University of Luxembourg, 2012
M. Bessenyei, Zs. Páles: Separation by linear interpolation families, J. Nonlinear Convex Anal., Vol. 13 (1), 49-56., 2012
G. Dolinar, L. Molnár: Sequential endomorphisms of finite-dimensional Hilbert space effect algebras, J. Phys. A, Math. Theor., Vol. 45 (6), Article ID 065207, 2012
W. Fechner, E. Gselmann: General and alien solutions of a functional equation and of a functional inequality, Publ. Math. Debrecen, Vol. 80 (1-2), 143–154., 2012
E. Gselmann: Notes on the characterization of derivations, Acta Sci. Math. (Szeged), Vol. 78 (1-2), 137–145., 2012
O. Hatori, L. Molnár: Isometries of the unitary group, Proc. Amer. Math. Soc., Vol. 140, 2127–2140., 2012
A. Gilányi, Cs. G. Kézi, K. Troczka-Pawelec: On two different concepts of subquadraticity, In Inequalities and Applications 2010, Birkhäuser (C. Bandle, A. Gilányi, L. Losonczi, M. Plum, eds.), volume 161, 209–215., 2012
A. Járai, F. Mészáros, K. Lajkó: On measurable functions satisfying multiplicative type functional equations almost everywhere, In Inequalities and Applications 2010, Birkhäuser (C. Bandle, A. Gilányi, L. Losonczi, M. Plum, eds.), volume 161, 241-253., 2012
J. Makó, K. Nikodem, Zs. Páles: On strong $(\alpha,F)$-convexity, Math. Inequal. Appl., Vol. 15 (2), 289–299., 2012
J. Makó, Zs. Páles: On $\varphi$-convexity, Publ. Math. Debrecen, Vol. 80 (1-2), 107–126., 2012
J. Makó, Zs. Páles: Implications between approximate convexity properties and approximate Hermite–Hadamard inequalities, Cent. Eur. J. Math., Vol. 10 (3) 1017–1041., 2012
J. Makó, Zs. Páles: Korovkin type theorems and approximate Hermite–Hadamard inequalities, J. Approx. Theory, Vol. 164 (8), 1111-1142., 2012
L. Molnár, G. Nagy: Isometries and relative entropy preserving maps on density operators, Linear Multilinear Algebra, Vol. 60 (1), 93-108., 2012
L. Molnár, P. Šemrl: Transformations of the unitary group on a Hilbert space, J. Math. Anal. Appl., Vol. 388 (2), 1205–1217., 2012
L. Székelyhidi: Polynomial functions and spectral synthesis on Abelian groups, Banach J. Math. Anal., Vol. 6 (1), 124–131., 2012
J. Szilasi, A. Tóth: Curvature collineations in spray manifolds, Balkan J. Geom. Appl., Vol. 17 (2), 104-114., 2012
C. Bandle, A. Gilányi, L. Losonczi, M. Plum: Inequalities and Applications 2010, International Series of Numerical Mathematics, Vol. 161, Birkhäuser, 2012
Zs. Páles, V. Zeidan: V-Jacobian and V-co-Jacobian for Lipschitzian maps, Discrete Contin. Dyn. Syst. Vol. 9 (2), 623–646, 2011
Sz. Baják, Zs. Páles: Computer aided solution of the invariance equation for two-variable Stolarsky means, Appl. Math. Comput. Vol. 216, 3219–3227, 2010
M. Bessenyei: Functional equations and finite groups of substitutions, Amer. Math. Monthly, Vol. 117 (10), 921–927, 2010
Z. Boros, E. Gselmann: Hyers–Ulam stability of derivations and linear functions, Aequationes Math., Vol 80 (1-2), 13–25, 2010
Z. Daróczy, J. Dascăl: On the equality problem of conjugate means, Results Math., Vol. 58 (1-2), 69–79, 2010
Á. Figula, Á. Száz: Graphical relationships between the infimum and intersection convolutions, Math. Pannon., Vol. 21(1), 23–35, 2010
A. Gilányi, K. Nagatou, P. Volkmann: Stability of a functional equation coming from the characterization of the absolute value of additive functions, Ann. Funct. Anal., Vol. 1 (2), 1-6, 2010
E. Gselmann: Stability of the entropy equation, Publ. Math. Debrecen, Vol. 77, 201–210, 2010
E. Gselmann: On the stability of the modified entropy equation, Results Math. Vol. 58, 255–268, 2010
E. Gselmann, Á. Száz: An instructive treatment of a generalization of Găvruţă's stability theorem, Sarajevo J. Math., Vol. 6 (18), 3–21, 2010
A. Házy: Bernstein – Doetsch type results for h–convex functions, Math. Inequal. Appl., Vol. 14 (3), 499–508, 2011
A. Járai: On the measurable solution of a functional equation, Aequationes Math., Vol. 80 (1-2), 131–139, 2010
L. Losonczi: Production functions having the CES property, Acta Math. Acad. Paedagog. Nyházi. (N.S.), Vol. 26 (1), 113–125, 2010
R. L. Lovas, J. Szilasi: Homotheties of Finsler manifolds, SUT J. Math., Vol. 46 (1), 23–34, 2010
J. Makó, Zs. Páles: Approximate convexity of Takagi type functions, J. Math. Anal. Appl., Vol 369, 545–554, 2010
Gy. Maksa, A. Varga: The equivalence of two functional equations involving the arithmetic mean, the geometric mean and their Gauss composition, Aequationes Math., Vol. 80, 173–179, 2010
F. Mészáros: Függvényegyenletek és karakterizációs problémák, Debreceni Egyetem, 2010
Zs. Páles, V. Zeidan: Co-Jacobian for Lipschitzian maps, Set-Valued and Variational Anal., Vol. 18 (1), 57–78, 2010
Á. Száz: Foundations of the theory of vector relators, Adv. Stud. Contemp. Math. (Kyungshang), Vol. 20 (1), 139–195, 2010
Á. Száz: The intersection convolution of relations, Creat. Math. Inform., Vol. 19 (2), 209–217, 2010
L. Székelyhidi, L. Vajday: Spectral analysis on commutative hypergroups, Aequationes Math., Vol. 80, 223–226, 2010
M. Bessenyei, Cs. G. Kézi: Functional equations and group substitutions, Linear Algebra Appl., Vol. 434 (6), 1525–1531, 2011
Almira, J. M.; Székelyhidi, L.: Local polynomials and the Montel theorem, Aequationes Math., Vol. 89, 2015
Makó, J.; Páles, Zs.: Approximate Hermite–Hadamard type inequalities for approximately convex functions, Math. Inequal. Appl. Vol. 16 (2), 507–526, 2013





 

Events of the project

 
2012-11-09 15:31:52
Résztvevők változása




Back »