|
Új kvantummechanikai jellemzők Coulomb-rendszerek leírására
|
súgó
nyomtatás
|
Ezen az oldalon az NKFI Elektronikus Pályázatkezelő Rendszerében nyilvánosságra hozott projektjeit tekintheti meg.
vissza »
|
|
Közleményjegyzék |
|
|
P. W. Ayers - M. Levy -Á. Nagy: Time-independent density functional theory for excited states of Coulomb systems, Phys. Rev. A 85, 042518, 2012 | M. Calixto - Á. Nagy - I. Paradela - E. Romera: Signatures of quantum fluctuations in the Dicke model by means of Rényi uncertainty, Phys. Rev. A 85, 053813., 2012 | N. H. March - Á. Nagy- F. Bogár - F. Bartha: Pauli potential functional for spherical inhomogenous electron liquids generated by a bare Coulomb field, Phys. Chem. Liq. 50, 412., 2012 | B. GodÓ - Á. Nagy:: Generalized complexity measures and chaotic maps, Chaos 22, 023118, 2012 | Á. Nagy - E. Romera:: Fisher entropy, Rényi entropy power and quantum phase transition in the Dicke model, Physica A 391, 3650, 2012 | E. Romera - R. del Real - M. Calixto - S. Nagy - Á. Nagy: Rényi entropy of the U(3) vibron model, J. Math. Chem. (2012) DOI 10.1007/s10910-012-0106-7, 2012 | Á. Nagy: Relationship between the effective potentials determining the density and the pair density, Comp. Theor. Chem. 1003, 97, 2013 | A. Nagy - E. Romera - S. B. Liu: Local coordinate, wave vector, Fisher and Shannon information in momentum representation, Physics Letters A 377, 286, 2013 | A. Nagy: Shannon entropy density as a descriptor of Coulomb systems, Chem. Phys. Lett. 556, 355., 2013 | A. Nagy: Local virial theorem for ensembles of excited states, Concepts and methods in modern theoretical chemistry, ed. S. K. Ghosh - P. K. Chattaraj (CRC Press, Boca Raton, 2013) p.135, 2013 | Á. Nagy: Theory of Excited States of Finite Systems in Coulomb External Potential, J. Phys. Conf. Series 410, 012155., 2013 | B. Godó, Á. Nagy: Characterization of Rössler and Duffing maps with Rényi entropy and generalized complexity measures, J. Phys. Conf. Series 410, 012090, 2013 | A. Nagy: Kinetic Energy and Fisher Information, Recent Advances in Orbital-free Density Functional Theory, eds. Y. A. Wang and T. A. Wesolowski, (World Scientific, ,2013, 2013 | A. Nagy, M. Calixto, E. Romera: A density functional view of quantum phase transitions, Journal of Chemical Theory and Computation, 2013 | A. Nagy - E. Romera: Quantum phase transitions via density functional theory. Extension to degenerate case, Phys. Rev. A 88, 042515, 2013 | E. Romera -A. Nagy: Density functional fidelity susceptibility and Kullback-Leibler entropy, Phys. Lett. A 377, 3098, 2013 | Á. Nagy - E. Romera: Fisher and Shannon information from one-matrix. Link to the kinetic energy, Chem. Phys. Lett. 597, 139, 2014 | Á. Nagy: Excited-state pair-density-functional theory, PHYSICAL REVIEW A 90, 022505, 2014 | Á. Nagy: Local thermodynamical formalism for ensembles of excited states, Indian Journal of Chemistry Vol. 53A, 965, 2014 | E. Romera - M. Calixto - Á. Nagy: Complexity measure and quantum shape-phase transitions in the two-dimensional limit of the vibron model, J Mol Model 20, 2237, 2014 | Á. Nagy: Fisher and Shannon Information in Orbital-Free Density Functional Theory, Int. J. Quantum Chem. 114, 24812, 2014 | H. Levamaki, Á. Nagy, K. Kokko, L. Vitos: Cusp relation for the Pauli potential, Phys. Rev. A 90, 062515, 2014 | Á. Nagy: Density Scaling and Virial Theorem, Mol. Phys. 113. 2015, 2015 | Á. Nagy - E. Romera: Relative Rényi entropy and fidelity susceptibility, Europhys. Lett. 109, 60002., 2015 | Á. Nagy: Ensemble formalism of the orbital-free density functional theory, Progress In Electromagnetics Research Symposium Proceedings, PIERS Proceedings, 1913 - 1917, July 6-9, Prague, 2015, 2015 | B. Godó - Á. Nagy: Detecting regular and chaotic behaviour in the parameter space by generalised statistical complexity measures, Chaos, Solitons and Fractals, 78, 26, 2015 | P. W. Ayers- M. Levy - Á. Nagy:: Kohn-Sham Theory for Excited States of Coulomb Systems, J. Chem. Phys. 143, 19111, 2015 | H. Leviamaki - aá. Nagy - K. Kokko - L. Vitos: Alternative to the Kohn-Sham equations: The Pauli potential differential equation, Phys. Rev. A 92, 062502., 2015 | Á. Nagy: Fisher and Shannon Information in Orbital-Free Density Functional Theory, Int. J. Quantum Chem. 115, 1392, 2015 | Á. Nagy: Euler equation for descriptors of the Spherically symmetric Coulomb systems, Int. J. Quantum Chem. 116, 862, 2016 | L. Y. Tian - H. Levamaki - M. Ropo - K. Kokko - Á. Nagy - L. Vitos: Exchange-correlation catastrope in Cu-Au: A challenge for semilocal density functional application, Phys. Rev. Lett. 117, 066401, 2016 | Á. Nagy: Phase space view of quantum mechanical systems and Fisher information, Phys. Lett. A 380, 2200, 2016 | B. Godó - Á. Nagy: Fisher information and Rényi dimension: A thermodynamic formalism, Chaos, 26, 083102, 2016 |
|
|
|
|
|
|
vissza »
|
|
|