|
Korszerű robusztus fuzzy klaszterező eljárások kutatása
|
súgó
nyomtatás
|
Ezen az oldalon az NKFI Elektronikus Pályázatkezelő Rendszerében nyilvánosságra hozott projektjeit tekintheti meg.
vissza »
|
|
Közleményjegyzék |
|
|
Szilágyi L, Szilágyi SM: Generalization rules for the suppressed fuzzy c-means clustering algorithm, Neurocomputing 139:298-309, 2014 | Szilágyi L: Lessons to learn from a mistaken optimization, Pattern Recognition Letters 36(1):29-35, 2014 | Lehotsky Á, Szilágyi L, Ferenci T, Kovács L, Pethes R, Wéber Gy, Haidegger T: Quantitative impact of direct, personal feedback on hand hygiene technique, Journal of Hospital Infection 91:81-84, 2015 | Szilágyi SM, Szilágyi L: A fast hierarchical clustering algorithm for large-scale protein sequence data sets, Computers in Biology and Medicine 48:94-101, 2014 | Szilágyi L: Lessons to learn from a mistaken optimization, Pattern Recognition Letters 36(1):29-35, 2014 | Szilágyi L, Szilágyi SM: An efficient Markov clustering approach to protein sequence grouping, Journal of Pattern Recognition & Image Processing 3(1):263-272, ISSN: 2160-9454, 2013 | Gosztolya G, Szilágyi L: Application of fuzzy and possibilistic c-means clustering models in blind speaker clustering, Acta Polytechinca Hungarica 12(7):41-56, 2015 | Szilágyi L, Szilágyi SM: Efficient Markov clustering algorithm for protein sequence grouping, 35th Annual International Conference of IEEE Engineering in Medicine and Biology Society, Osaka, pp. 639-642, ISBN 978-1-4577-0214-3, 2013 | Szilágyi SM, Szilágyi L, Hirsbrunner B: Simulation of arrhythmia using adaptive spatio-temporal resolution, Computers in Cardiology 40:(accepted paper, 4 pages), 2013 | Szilágyi SM, Szilágyi L, Hirsbrunner B: Modeling the influence of high fibroblast level on arrhythmia development and obstructed depolarization spread, Computers in Cardiology 40:(accepted paper, 4 pages), 2013 | Szilágyi L: Lessons to learn from a mistaken optimization, Pattern Recognition Letters 36(1):29-35, 2014 | Szilágyi L, Szilágyi SM: An efficient Markov clustering approach to protein sequence grouping, Journal of Pattern Recognition & Image Processing 3(1):263-272, ISSN: 2160-9454, 2013 | Szilágyi L, Szilágyi SM: Efficient Markov clustering algorithm for protein sequence grouping, 35th Annual International Conference of IEEE Engineering in Medicine and Biology Society, Osaka, pp. 639-642, ISBN 978-1-4577-0214-3, 2013 | Szilágyi SM, Szilágyi L, Hirsbrunner B: Simulation of arrhythmia using adaptive spatio-temporal resolution, Computers in Cardiology 40:365-368, 2013 | Szilágyi SM, Szilágyi L, Hirsbrunner B: Modeling the influence of high fibroblast level on arrhythmia development and obstructed depolarization spread, Computers in Cardiology 40:45-48, 2013 | Szilágyi L, Szilágyi SM: Generalization rules for the suppressed fuzzy c-means clustering algorithm, Neurocomputing 139:298-309, 2014 | Szilágyi SM, Szilágyi L: A fast hierarchical clustering algorithm for large-scale protein sequence data sets, Computers in Biology and Medicine 48:94-101, 2014 | Szilágyi L, Dénesi G, Szilágyi SM: Fast color reduction using approximative c-means clustering models, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2014, Beijing), pp. 194-201, ISBN: 978-1-4799-2073-0, 2014 | Szilágyi L, Dénesi G, Kovács L, Szilágyi SM: Comparison of various improved-partition fuzzy c-means clustering algorithms in fast color reduction, 12th IEEE International Symposium on Intelligent Systems and Informatics (SISY 2014, Subotica), pp. 197-202, ISBN: 978-1-4799-5996-9, 2014 | Szilágyi L, Szilágyi SM: Fast implementations of Markov clustering for protein sequence grouping, Modeling Decisions for Artificial Intelligence, LNCS vol. 8234, pp. 214-225 (MDAI 2013, Barcelona), ISBN: 978-3-642-41549-4, 2013 | Szilágyi L, Varga ZsR, Szilágyi SM: Application of the fuzzy-possibilistic product partition in elliptic shell clustering, Modeling Decisions for Artificial Intelligence, LNCS vol. 8825, pp. 158-169 (MDAI 2014, Tokyo), 2014 | Szilágyi L, Szilágyi SM, Hirsbrunner B: A fast and memory-efficient heirarchical graph clustering algorithm, International Conference on Neural Information Processing, LNCS vol. 8834, pp. 247-254 (ICONIP 2014, Kuching), 2014 | Szilágyi L, Kovács L, Szilágyi SM: Synthetic test data generation for hierarchical graph clustering methods, International Conference on Neural Information Processing, LNCS vol. 8835, pp. 303-310 (ICONIP 2014, Kuching), 2014 | Szalay P, Szilágyi L, Benyó Z, Kovács L: Sensor drift compensation using fuzzy interface system and sparse-grid quadrature filter in blood glucose control, International Conference on Neural Information Processing, LNCS vol. 8835, pp. 445-453 (ICONIP 2014, Kuching), 2014 | Szilágyi L: A unified theory of fuzzy c-means clustering models with improved partition, Modeling Decisions for Artificial Intelligence, LNCS vol. 9321, pp. 129-140 (MDAI 2015, Skövde, Svédország), 2015 | Szilágyi L, Nagy LL, Szilágyi SM: Recent advances in improving the memory efficiency of the TRIBE MCL algorithm, International Conference on Neural Information Processing, LNCS vol. 9490, pp. 28-35 (ICONIP 2015, Isztambul), 2015 | Iclanzan D, Szilágyi L: Neural population coding of stimulus features, International Conference on Neural Information Processing, LNCS vol. 9492, pp. 263-270 (ICONIP 2015, Isztambul), 2015 | Szilágyi L, Lefkovits L, Iantovics BL, Iclanzan D, Benyó B: Automatic brain tumor segmentation in multispectral MRI volumetric records, International Conference on Neural Information Processing, LNCS vol. 9492, pp. 174-181 (ICONIP 2015, Isztambul), 2015 | Szilágyi L, Lefkovits L, Benyó B: Automatic brain tumor segmentation in multispectral MRI volumes using a fuzzy c-means cascade algorithm, 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2015, Zhangjiajie, Kína), pp. 310-316, ISBN 978-1-4673-7681-5, 2015 | Szilágyi L: Random process simulation using Petri nets, 5th International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (MACRO 2015, Marosvásárhely), pp. 177-182, ISSN 2247-0948, 2015 |
|
|
|
|
|
|
vissza »
|
|
|