|
Ezen az oldalon az NKFI Elektronikus Pályázatkezelő Rendszerében nyilvánosságra hozott projektjeit tekintheti meg.
vissza »
|
|
Közleményjegyzék |
|
|
Léka Z.: On discrete time regularity of bounded linear operators,, Banach Center Publ. (In : Operator Theory), to appear, 2017 | D. Virosztek: Applications of an intersection formula to dual cones, Bull. Austral. Math. Soc., to appear, 2017 | H.Y. Chen, Gy.P. Gehér, C.N. Liu, L. Molnár, D. Virosztek and N.C. Wong: Generalized isometries of the positive definite cone with respect to the quantum χ 2 α-divergences., Lett. Math. Phys., to appear, 2017 | D. Virosztek: Connections between centrality and local monotonicity of certain functions on C ∗ - algebras, J. Math. Anal. Appl. 453, 221-226., 2017 | Léka Z., Petz D.: Some decompositions of matrix variances, Probab. Math. Statist., 33:(2) 191-199., 2013 | Tarcsay Zsigmond, Titkos Tamás: On the order structure of representable functionals, Glasgow Mathematical Journal, to appear, 2017 | Gehér György Pál, Titkos Tamás: A characterization of isometries with respect to the Lévy-Prokhorov metric, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, to appear, 2017 | Fumio Hiai, Milán Mosonyi: Different quantum f-divergences and the reversibility of quantum operations, Reviews in Mathematical Physics, Vol. 29, No. 7, 1750023, 2017 | Milán Mosonyi, Tomohiro Ogawa: Strong converse exponent for classical-quantum channel coding, Communications in Mathematical Physics, 355(1), pp. 373–426, 2017 | V. Morinelli, Y. Tanimoto and M. Weiner: Conformal covariance and the split property, Commun. Math. Phys., to appear, 2017 | M. Kolountzakis, M. Matolcsi, M. Weiner: An application of positive definite functions to the problem of MUBs, Proc. AMS, to appear., 2017 | D. Petz, G. Tóth: Extremal properties of the variance and quantum Fsher information, Phys. Rev. A, 87, 032324, 2013 | Á. Besenyei, D. Petz: Partial subadditivity of entropies, Linear Alg. Appl., accepted, 2013 | F. Hiai, H. Kosaki, D. Petz , M.B. Ruskai: Families of completely positive maps associated with monotone metrics, Linear Alg. Appl., accepted, 2013 | D. Petz, D. Virosztek: A characterization theorem for matrix variances, Acta Sci. Math to appear, 2015 | D. Petz, D. Virosztek: Some inequalities for quantum Tsallis entropy related to the strong subadditivity, Math. Inequal. Appl. (to appear), 2015 | P. E. Frenkel and M. Weiner: On vector configurations that can be realized in the cone of positive matrices, Linear Alg. Appl (to appear), 2015 | Léka Z: A note on central moments in C*-algebras, J. Math. Inequal (to appear), 2015 | Z. Léka: A note on extremal decomposition of covariances, Rocky Mountain J. Math. (to appear), 2015 | Z. Léka: Time regularity and functions of the Volterra operator, Stud. Math., 220:(1) 1-14.(, 2014 | F. Hiai and D. Petz: Introduction to matrix analysis and applications, Springer „Universitytext” series, 2014 | M. Weiner:: A gap for the maximum number of mutually unbiased bases, Proc. Amer. Math. Soc. 141 (2013), 1963-1969., 2013 | M. Matolcsi, I. Z. Ruzsa and M. Weiner: Systems of mutually unbiased Hadamard matrices containing real and complex matrices., Australas. J. Combin. 55 (2013), 35-47., 2013 | D. Petz and G. Tóth: Extremal properties of the variance and quantum Fsher information, Phys. Rev. A 87 (2013), 032324., 2013 | Á. Besenyei and D. Petz: Partial subadditivity of entropies, Linear Alg. Appl. 439 (2013), 3297-3305., 2013 | F. Hiai, H. Kosaki, D. Petz and M.B. Ruskai: Families of completely positive maps associated with monotone metrics, Linear Alg. Appl. 439 (2013), 1749-1791., 2013 | D. Petz and D. Virosztek: A characterization theorem for matrix variances, Acta Sci. Math. 80 (2014), 681-687., 2014 | D. Petz and D. Virosztek: Some inequalities for quantum Tsallis entropy related to the strong subadditivity, Math. Inequal. Appl. 18 (2015), 555-568., 2015 | P. E. Frenkel and M. Weiner: On vector configurations that can be realized in the cone of positive matrices, Linear Alg. Appl. 459 (2014), 465-474., 2014 | Z. Léka: A note on central moments in C*-algebras, J. Math. Inequal. 9 (2015), 165-175, 2015 | Z. Léka: Time regularity and functions of the Volterra operator, Stud. Math. 220:1 (2014), 1-14., 2014 | P. E. Frenkel and M. Weiner: Classical information storage in an n-level quantum system, Commun. Math. Phys. 340 (2015), 563-574., 2015 | M. Matolcsi and M. Weiner: An improvement on the Delsarte-type LP bound with application to MUBs, Open Syst. Inf. Dyn. 22 (2015), 1550001., 2015 | Á. Besenyei and Z. Léka: Leibniz seminorms in probability spaces, J. Math. Anal. Appl. 429 (2015), 1178-1189, 2015 | M. Pálfia and D. Petz: Weighted multivariable operator means of positive definite operators, Linear Alg. Appl. 463 (2014), 134-153., 2014 | J. Pitrik and D. Virosztek: On the joint convexity of the Bregman divergence of matrices, Lett. Math. Phys. 105:5 (2015), 675-692., 2015 | L. Molnár and D. Virosztek: On algebraic endomorphisms of the Einstein gyrogroup, J. Math. Phys. 56 (2015), 082302., 2015 | L. Molnár, J. Pitrik, D. Virosztek: Maps on positive definite matrices preserving Bregman and Jensen divergences, Linear Algebra Appl. 495 (2016), 174–189., 2016 | L. Molnár, D. Virosztek: Continuous Jordan triple endomorphisms of P2, J. Math. Anal. Appl. 438(2) (2016), 828-839., 2016 | D. Virosztek: Quantum f-divergence preserving maps on positive semidefinite operators acting on finite dimensional Hilbert spaces, Linear Algebra Appl. 501 (2016), 242–253, 2016 | D. Virosztek: Maps on quantum states preserving Bregman and Jensen divergences, Lett. Math. Phys. 106(9) (2016), 1217-1234., 2016 | Tom Cooney, Milán Mosonyi, Mark M. Wilde: Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication, Communications in Mathematical Physics, Volume 344, Issue 3, pp. 797–829, (2016), 2016 | T. Titkos: The singular part as fixed point, Amer. Math. Monthly (to appear), 2016 | P.E. Frenkel: Polynomial identites for matrices over the Grassmann algebra, Israel J. Math (to appear), 2016 | Péter E. Frenkel: Convergence of graphs with intermediate density, Trans. Amer. Math. Soc. (to appear), 2016 | P.E. Frenkel, J. Pelikán: ON THE GREATEST COMMON DIVISOR OF THE VALUE OF TWO POLYNOMIALS, Amer. Math. Monthly (to appear), 2016 | Léka, Zoltán: Some inequalities for central moments of matrices, Linear Algebra Appl. 496 (2016), 246–261., 2016 | Léka, Zoltán: A note on extremal decompositions of covariances, Rocky Mountain J. Math. 46 (2016), no. 2, 571–580., 2016 | S. Carpi, Y. Kawahigashi, R. Longo, M. Weiner: From vertex operator algebras to conformal nets and back, Mem. Amer. Math. Soc. (to appear), 2016 | M. Weiner: Local equivalence of representations of Diff(S^1) corresponding to different highest weights, Commun. Math. Phys. (to appear), 2016 | D. Petz and G. Tóth: Extremal properties of the variance and quantum Fsher information, Phys. Rev. A 87, 032324., 2013 | Á. Besenyei and D. Petz: Partial subadditivity of entropies, Linear Alg. Appl. 439, 3297-3305., 2013 | D. Petz and D. Virosztek: A characterization theorem for matrix variances, Acta Sci. Math. 80, 681-687., 2014 | D. Petz and D. Virosztek: Some inequalities for quantum Tsallis entropy related to the strong subadditivity, Math. Inequal. Appl. 18, 555-568., 2015 | P. E. Frenkel and M. Weiner: On vector configurations that can be realized in the cone of positive matrices, Linear Alg. Appl. 459, 465-474., 2014 | Z. Léka: A note on central moments in C*-algebras, J. Math. Inequal. 9, 165-175, 2015 | Z. Léka: Time regularity and functions of the Volterra operator, Stud. Math. 220:1, 1-14., 2014 | P. E. Frenkel and M. Weiner: Classical information storage in an n-level quantum system, Commun. Math. Phys. 340, 563-574., 2015 | M. Matolcsi and M. Weiner: An improvement on the Delsarte-type LP bound with application to MUBs, Open Syst. Inf. Dyn. 22, 1550001., 2015 | Á. Besenyei and Z. Léka: Leibniz seminorms in probability spaces, J. Math. Anal. Appl. 429, 1178-1189, 2015 | J. Pitrik and D. Virosztek: On the joint convexity of the Bregman divergence of matrices, Lett. Math. Phys. 105:5, 675-692., 2015 | L. Molnár and D. Virosztek: On algebraic endomorphisms of the Einstein gyrogroup, J. Math. Phys. 56, 082302., 2015 | L. Molnár, J. Pitrik, D. Virosztek: Maps on positive definite matrices preserving Bregman and Jensen divergences, Linear Algebra Appl. 495, 174–189., 2016 | L. Molnár, D. Virosztek: Continuous Jordan triple endomorphisms of P2, J. Math. Anal. Appl. 438(2), 828-839., 2016 | D. Virosztek: Quantum f-divergence preserving maps on positive semidefinite operators acting on finite dimensional Hilbert spaces, Linear Algebra Appl. 501, 242–253, 2016 | D. Virosztek: Maps on quantum states preserving Bregman and Jensen divergences, Lett. Math. Phys. 106(9), 1217-1234., 2016 | Tom Cooney, Milán Mosonyi, Mark M. Wilde: Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication, Communications in Mathematical Physics, Volume 344, Issue 3, pp. 797–829., 2016 | T. Titkos: The singular part as fixed point, Amer. Math. Monthly (to appear), 2017 | P.E. Frenkel: Polynomial identites for matrices over the Grassmann algebra, Israel J. Math. 220 (2), 791-801, 2017 | Péter E. Frenkel: Convergence of graphs with intermediate density, Trans. Amer. Math. Soc. (to appear), 2017 | P Csikvári, PE Frenkel, J Hladký, T Hubai: Chromatic roots and limits of dense graphs, Discrete Mathematics 340 (5), 1129-1135, 2017 | Léka, Zoltán: Some inequalities for central moments of matrices, Linear Algebra Appl. 496, 246–261., 2016 | Léka, Zoltán: A note on extremal decompositions of covariances, Rocky Mountain J. Math. 46, no. 2, 571–580., 2016 | S. Carpi, Y. Kawahigashi, R. Longo, M. Weiner: From vertex operator algebras to conformal nets and back, Mem. Amer. Math. Soc. (to appear), 2017 | M. Weiner: Local equivalence of representations of Diff(S^1) corresponding to different highest weights, Commun. Math. Phys. Volume 352, Issue 2, pp 759–772., 2017 | On the greatest common divisor of the value of two polynomials: PE Frenkel, J Pelikán, American Mathematical Monthly 124 (5), 446-450, 2017 | Léka Z.: On the Leibniz rule for random variables, Math. Inequal. Appl., to appear, 2017 | Léka Z.: Symmetric seminorms and the Leibniz property, J. Math. Anal. Appl., 452:(1), 708-725., 2017 |
|
|
|
|
|
|
vissza »
|
|
|