|
Ezen az oldalon az NKFI Elektronikus Pályázatkezelő Rendszerében nyilvánosságra hozott projektjeit tekintheti meg.
vissza »
|
|
Közleményjegyzék |
|
|
Dénes A; Röst G: Global dynamics for the spread of ectoparasite-borne diseases, Nonlinear Analysis: Real World Applications 18 (2014) 100-107., 2014 | Hatvani L: An elementary method for the study of Meissner's equation and its application to proving the Oscillation Theorem, Acta Sci Math (Szeged) 79 (2013), 87--105., 2013 | Csizmadia L; Hatvani L: An extension of the Levi-Weckesser method to the stabilization of the inverted pendulum under gravity, Meccanica, 49 (2014), 1091-1100., 2014 | Bartha F; Garab A; Krisztin T: Local stability implies global stability for the 2-dimensional Ricker map, J. Difference Equ. Appl. 19 (2013), 2043-2078., 2013 | Bánhelyi B;, Csendes T; Neumaier A; Krisztin T: Global attractivity of the zero solution for Wright’s equation, SIAM J. Appl. Dy. Syst. 13 (2014), 537-563., 2014 | Krisztin T; Vas G: Erratum to: Large-amplitude periodic solutions for differential equations with delayed monotone positive feedback, J. Dynam. Differential Equations 26 (2014), 401-403., 2014 | Szimjanovszki I; Karsai J; Rácz ÉVP: On the asymptotic behavior of spatially implicit models of competition of two species with overcolonization, DYNAMIC SYSTEMS AND APPLICATIONS 23: pp. 677-690. (2014), 2014 | Polner M; Van der Vegt JJW: A Hamiltonian vorticity-dilatation formulation of the compressible Euler equations, Nonlinear Analysis, Theory, Methods and Applications, 109 (2014), 113-135, 2014 | Stachó LL: On strongly continuous one-parameter groups of automorphisme, ROMANIAN JOURNAL OF PURE AND APPLIED MATHEMATICS 4: pp. 1-11. (2014), 2014 | Knipl DH; Röst G; Wu J: Epidemic Spread and Variation of Peak Times in Connected Regions Due to Travel-Related Infections -- Dynamics of an Antigravity-Type Delay Differential Model, SIAM J. Appl. Dyn. Syst., 12(4), 1722–1762. (2013), 2013 | Knipl DH; Röst G: Backward bifurcation in SIVS model with immigration of non-infectives,, Biomath 2 (2013), 1312051, 2013 | Pituk M; Röst G: Large Time Behavior of a Linear Delay Differential Equation with Asymptotically Small Coefficient, Boundary Value Problems, 2014:114, 2014 | Gourley S; Röst G; Thieme HR: Uniform persistence in a model for bluetongue dynamics, SIAM J. Math. Anal., 46(2), 1160–1184, 2014 | Röst G; Vizi Zs: Backward bifurcation for pulse vaccination, Nonlinear Analysis - Hybrid Systems, 14, pp 99-113, 2014, 2014 | Faria T; Röst G: Persistence, permanence, and global stability for an n-dimensional Nicholson system, Journal of Dynamics and Differential Equations, 2014, 2014 | Röst G: Baneling dynamics in the Legend of the Seeker, , Chapter 17 in: Mathematical Modelling of Zombies (ed. Robert Smith), pp 231-241, University of Ottawa Press, 2014 , ISBN: 9780776622101, 2014 | F. A. Bartha; Á. Garab: Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model, Journal of Computational Dynamics 1(2):213-232, 2014., 2014 | Krisztin T; Vas G: The Unstable Set of a Periodic Orbit for Delayed Positive Feedback, Journal of Dynamics and Differential Equations, DOI 10.1007/s10884-014-9375-0. pp 1-51, 2014 | Nah K; Nakata Y; Röst G: Malaria dynamics with long incubation period in hosts, COMPUTERS AND MATHEMATICS WITH APPLICATIONS 68:(9) pp. 915-930. (2014), 2014 | Knipl DH; Röst G: Large number of endemic equilibria for disease transmission models in patchy environment, MATHEMATICAL BIOSCIENCES 258: pp. 201-222. (2014), 2014 | Dénes A, Röst G: Global dynamics of a compartmental system modeling ectoparasite-borne diseases, ACTA SCIENTIARUM MATHEMATICARUM - SZEGED 80:(3-4) pp. 553-572. (2014), 2014 | Nakata Y; Röst G: Global dynamics of a delay differential system of a two-patch SIS-model with transport-related infections, MATHEMATICA BOHEMICA 140:(2) pp. 171-193. (2015), 2015 | Nakata Y; Röst G: Global analysis for spread of infectious diseases via transportation networks, JOURNAL OF MATHEMATICAL BIOLOGY 70:(6) pp. 1411-1456. (2015), 2015 | Liu M; Liz E; Röst G: Endemic bubbles generated by delayed behavioral response -- global stability and bifurcation switches in an SIS model, SIAM JOURNAL ON APPLIED MATHEMATICS 75:(1) pp. 75-91. (2015), 2015 | Knipl DH; Pilarczyk P; Röst G: Rich bifurcation structure in a two-patch vaccination model, SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS 14:(2) pp. 980-1017. (2015), 2015 | Kiss IZ; Röst G; Vizi Zs: Generalization of pairwise models to non-Markovian epidemics on networks, PHYSICAL REVIEW LETTERS 115, 078701 (2015), 2015 | Gourley S; Liu R; Röst G: Age-dependent intraspecific competition in pre-adult life stages and its effects on adult population dynamics, EUROPEAN JOURNAL OF APPLIED MATHEMATICS doi:10.1017/S0956792515000418 (2015), 2015 | Dénes A; Röst G: Impact of excess mortality on the dynamics of diseases spread by ectoparasites, In: Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science, Springer (New York), 2015. pp. 177-182. (ISBN:978-3-319-12306-6), 2015 | Barbarossa MV; Dénes A,; Kiss G,; Nakata Y,; Röst G; Vizi Zs: Transmission dynamics and final epidemic size of Ebola Virus Disease outbreaks with varying interventions, PLoS ONE 10(7): e0131398. doi:10.1371/journal.pone.0131398, 2015 | Barbarossa MV; Röst G: Immuno-epidemiology of a population structured by immune status: a mathematical study of waning immunity and immune system boosting, JOURNAL OF MATHEMATICAL BIOLOGY doi:10.1007/s00285-015-0880-5 (2015), 2015 | Nussbaum R; Vas G: Gevrey class regularity for analytic differential-delay equations, ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS 17: pp. 1-10. (2016), 2016 | Tóbiás R; Stacho LL; Tasi G: First-order chemical reaction networks I: theoretical considerations, J Math Chem, DOI 10.1007/s10910-016-0655-2, 2016 | Kiss IZ; Röst G; Vizi Zs: Impact of non-Markovian recovery on network epidemics, BIOMAT 2015: Proceedings of the International Symposium on Mathematical and Computational Biology, (2015) p.40-53, 2016 | Garab Á; Kovács V; Krisztin T: Global stability of a price model with multiple delays, Discrete and Continuous Dynamical Systems 36(2016), 6855-6871, 2016 | Dénes A; Röst G: Global stability for SIR and SIRS models with nonlinear incidence and removal terms via Dulac functions, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), 1101–1117, 2016 | Dénes A; Hatvani L: On the asymptotic behaviour of solutions of an asymptotically Lotka–Volterra model, Elektron. J. Qual. Theory Differ. Equ. 2016, No. 67, 1–10., 2016 | Hatvani L: Marachkov type stability conditions for non-autonomous functional differential equations with unbounded right-hand sides, Electron. J. Qual. Theory Differ. Equ. 2015, No. 64, 1-11., 2015 | Csizmadia L; Hatvani L: On a linear model of swinging with a periodic step function coefficient, Acta Sci. Math. (Szeged), 81(2015), 483--502., 2015 | El-Morshedy H; Röst G; Ruiz-Herrera A: Global dynamics of delay recruitment models with maximized lifespan, ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK (2016) 67: 56, 2016 | Gourley S; Liu R; Röst G: Age-dependent intraspecific competition in pre-adult life stages and its effects on adult population dynamics, EUROPEAN JOURNAL OF APPLIED MATHEMATICS 27:(1) pp. 131-156. (2016), 2016 | Knipl D; Röst G: Spatially heterogeneous populations with mixed negative and positive local density dependence, THEORETICAL POPULATION BIOLOGY 109: pp. 6-15. (2016), 2016 | Röst G; Vizi Zs; Kiss I: Impact of Non-Markovian Recovery on Network Epidemics, BIOMAT 2015, 40-53 Singapore: World Scientific, 2016, 2016 | Wu X; Röst G; Zou X: Impact of spring bird migration on the range expansion of Ixodes scapularis tick population, BULLETIN OF MATHEMATICAL BIOLOGY 78: pp. 138-168. (2016), 2016 | Krisztin T; Vas G: The Unstable Set of a Periodic Orbit for Delayed Positive Feedback, Journal of Dynamics and Differential Equations 28 (2016), 805–855, 2016 | Krisztin T; Rezounenko A: Parabolic partial differential equations with discrete state-dependent delay: classical solutions and solution manifold, J. Differential Equations 260 (2016), 4454–4472., 2016 | Krisztin, T; Polner, M; Vas, G: Periodic solutions and hydra effect for delay differential equations with nonincreasing feedback, Qual. Theory Dyn. Syst. 16 (2017), 269–292., 2017 | Hatvani L: On the global attractivity and asymptotic stability for autonomous systems of differential equations on the plane, Proc. Amer. Math. Soc. 145 (2017), no. 3, 1121–1129., 2017 | Hatvani L: Asymptotic stability of non-autonomous functional differential equations with distributed delays, Electron. J. Differential Equations 2016, Paper No. 302,, 2016 | Barbarossa, MV; Polner, M; Röst, G: Stability switches induced by immune system boosting in an SIRS model with discrete and distributed delays, SIAM J. Appl. Math. 77(2017), no. 3, 905–923., 2017 | Dénes, A; Muroya, Y; Röst, G: Global stability of a multistrain SIS model with superinfection, Math. Biosci. Eng. 14 (2017), no. 2, 421–435., 2017 | Nah, K; Röst, G: Stability threshold for scalar linear periodic delay differential equations, Canad. Math. Bull. 59 (2016), no. 4, 849-857., 2016 | Vas, G: Configurations of periodic orbits for equations with delayed positive feedback, J. Differential Equations 262 (2017), no. 3, 1850–1896., 2017 | Dénes A, Székely L: Global dynamics of a mathematical model for the possible re-emergence of polio, Math. Biosci. 293 (2017), 64–74., 2017 | Dénes A, Székely L: Small solutions of the damped half-linear oscillator with step function coefficients, Electron. J. Qual. Theory Differ. Equ. 2018, No. 46, 1–13., 2018 | Dénes A, Röst G: Dynamics of an infectious disease including ectoparasites, rodents and humans, Trends in Biomathematics: Modeling, Optimization and Computational Problems (ed. R. Mondaini), Springer, 2018, pp. 59–73., 2018 | Hatvani L: On the damped harmonic oscillator with time dependent damping coefficient, J. Dynam. Differential Equations, 30(2018), 25—37, 2018 | Hatvani L: Smith-type stability theorems for the damped linear oscillator, Dynam. Systems Appl., 27(2018), 299—318, 2018 | Csizmadia L, Hatvani L: On the existence of periodic motions of the excited inverted pendulum by elementary methods, Acta Math. Hungar., 155(2018), 298-312, 2018 | Polner M, van der Vegt J, van Gils S: A Space-Time Finite Element Method for Neural Field Equations with Transmission Delays, SIAM JOURNAL ON SCIENTIFIC COMPUTING 395) pp. B797-B818. (2017), 2017 | Stachó L L: On C0-semigroups of holomorphic isometries with fixed point in JB*-triples, Roumain J. of Pure and Applied Math., 63 (2018), 211-235, 2018 | Kiss G, Lessard J-P: Rapidly and slowly oscillating periodic solutions of a delayed Van der Pol oscillator, Journal of Dynamics and Differential Equations, 29(4):1233-1257, 2017, 2017 | Kiss G, Röst G: Controlling Mackey-Glass chaos, Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(11):114321, 2017, 2017 | Kiss G, Röst G: Controlling Mackey-Glass chaos, Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(11):114321, 2017, 2017 | Bartha F A; Krisztin T: Global stability in a system using echo for position control, Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 40, 16 pp., 2018 | Krisztin T; Walther H-O: Smoothness issues in differential equations with state-dependent delay, Rend. Istit. Mat. Univ. Trieste 49 (2017), 95–112., 2017 | Győri I; Nakata Y; Röst G: Unbounded and blow-up solutions for a delay logistic equation with positive feedback, Commun. Pure Appl. Anal. 17 (2018), no. 6, 2845–2854., 2018 | Röst G; Kuniya T; Moghadas S M; Wu J: Global dynamics of an epidemiological model with age-of-infection dependent treatment rate, Ric. Mat. 67 (2018), no. 1, 125–140., 2018 | Győri I; Nakata Y; Röst G: Unbounded and blow-up solutions for a delay logistic equation with positive feedback, Commun. Pure Appl. Anal. 17 (2018), no. 6, 2845–2854., 2018 | Nakata Y; Röst G: Global stability of an SIS epidemic model with a finite infectious period, Differential Integral Equations 31 (2018), no. 3-4, 161–172., 2018 | Röst G, Kiss IZ, Vizi Z: Variance of Infectious Periods and Reproduction Numbers for Network Epidemics with Non-Markovian Recovery, Berlin: Springer-Verlag, 2017. (Mathematics in Industry), Progress in Industrial Mathematics at ECMI 2016, pp. 171-178, 2018 |
|
|
|
|
|
|
vissza »
|
|
|