ERA-NET Concert-Japan; Plazmonnal segített THz-es emisszió nanostrukturált fém/félvezető felületen femtoszekundumos lézer hatására
Angol cím
ERA-NET Concert-Japan; Plasmon-enhanced Tera-Hertz emission by Femtosecond laser pulses of nanostructured semiconductor/metal surfaces
magyar kulcsszavak
Molekulasugárepitaxia, nanostruktúra, lézer
angol kulcsszavak
molecular beam epitaxy, nano structure, laser
megadott besorolás
Anyagtudomány és Technológia (fizika) (Műszaki és Természettudományok Kollégiuma)
70 %
Ortelius tudományág: Nanotechnológia
Anyagtudomány és Technológia (elektronika) (Műszaki és Természettudományok Kollégiuma)
30 %
zsűri
Fizika 1
Kutatóhely
Mikroelektronikai és Technológiai Intézet (Óbudai Egyetem)
résztvevők
Hajnal Zoltán Pécz Béla Tóth Lajos
projekt kezdete
2014-11-01
projekt vége
2017-10-31
aktuális összeg (MFt)
9.874
FTE (kutatóév egyenérték)
1.29
állapot
lezárult projekt
magyar összefoglaló
A kutatás összefoglalója, célkitűzései szakemberek számára Itt írja le a kutatás fő célkitűzéseit a témában jártas szakember számára. FemtoTera addresses the fundamental technological field of ultrashort pulsed Terahertz (THz) radiation generation for time domain spectroscopy. This is an ever growing field, due to the important properties of such radiation and its significant applications. One of the more effective way to generate short THz radiation pulses is via femtosecond near-infrared (NIR) laser irradiated on semiconductor/metal surfaces. FemtoTera project targets the study of such THz generation process at surfaces by stimulating with utrashort laser pulses a semiconductor surface nano-engineered with self-assembled quantum dots (QDs) - metal nanoparticle (MNP) systems. The surface will be nanostructured via bottom-up processes, using innovative fabrication methods developed by the consortium participants. The interaction effects between ultrashort NIR laser pulses and the nanostructured will be investigated, in view of THz generation, both theoretically and experimentally using the complementary expertise of the EU and Japan groups. The FemtoTera research final goal is to increase our understanding of the complex, multi time scale physical interactions between light and matter and their related photo-responsive processes, thus leading to the development of next generation materials for time domain spectroscopy THz sources.
Mi a kutatás alapkérdése? Ebben a részben írja le röviden, hogy mi a kutatás segítségével megválaszolni kívánt probléma, mi a kutatás kiinduló hipotézise, milyen kérdéseket válaszolnak meg a kísérletek. FemtoTera will develop an innovative ultrashort pulse Terahertz (THz) generation scheme, using nanostructured semiconductor/metal surfaces and ultrashort NIR laser pulses to efficiently generate THz radiation. Reliable THz pulses can be obtained by interaction of laser light with semiconductor and semiconductor/metal interfaces. However, the possibility to use, instead of bare semiconductor surfaces, quantum nanostructures would introduce a large flexibility, owing to quantum confinement effects, allowing for the manipulation of the emission over the region from several to hundreds of microns. The FemtoTera project will study plasmon-enhanced emission from intraband transition that takes place, when irradiated with femtosecond laser pulses, on surfaces functionalized with self-assembled QD molecules (QDMs) coupled to a MNPs. THz radiation emission, with a frequency corresponding to the QD molecule interlevel spacing is expected. Innovative fabrication schemes (Droplet Epitaxy - DE) based on advanced Molecular Beam Epitaxy procedures for the self assembly and self-alignment of QDM and MNP will be implemented by FemtoTera. DE offers the unique opportunity to realize both QDM and MNP within the same bottom-up approach and platform, thus allowing the fabrication of large functionalized surfaces for efficient THz generation. FemtoTera expected results: i) Bottom-up nano-structuring of semiconductor surface with QDM-MNP coupled systems ii)
Mi a kutatás jelentősége? Röviden írja le, milyen új perspektívát nyitnak az alapkutatásban az elért eredmények, milyen társadalmi hasznosíthatóságnak teremtik meg a tudományos alapját. Mutassa be, hogy a megpályázott kutatási területen lévő hazai és a nemzetközi versenytársaihoz képest melyek az egyediségei és erősségei a pályázatának! Understanding the physical phenomena taking place within the QDM-MNP complex during laser irradiation iii) Nano-engineering of QDM-MNP systems to meet THz generation requirements, in terms of intensity and frequency. iv) Study of THz generation from semiconductor surfaces functionalized with QDM-MNP complex under NIR ultrafast laser irradiation.
A kutatás összefoglalója, célkitűzései laikusok számára Ebben a fejezetben írja le a kutatás fő célkitűzéseit alapműveltséggel rendelkező laikusok számára. Ez az összefoglaló a döntéshozók, a média, illetve az érdeklődők tájékoztatása szempontjából különösen fontos az NKFI Hivatal számára. Basic research in nano science
angol összefoglaló
Summary of the research and its aims for experts Describe the major aims of the research for experts. FemtoTera addresses the fundamental technological field of ultrashort pulsed Terahertz (THz) radiation generation for time domain spectroscopy. This is an ever growing field, due to the important properties of such radiation and its significant applications. One of the more effective way to generate short THz radiation pulses is via femtosecond near-infrared (NIR) laser irradiated on semiconductor/metal surfaces. FemtoTera project targets the study of such THz generation process at surfaces by stimulating with utrashort laser pulses a semiconductor surface nano-engineered with self-assembled quantum dots (QDs) - metal nanoparticle (MNP) systems. The surface will be nanostructured via bottom-up processes, using innovative fabrication methods developed by the consortium participants. The interaction effects between ultrashort NIR laser pulses and the nanostructured will be investigated, in view of THz generation, both theoretically and experimentally using the complementary expertise of the EU and Japan groups. The FemtoTera research final goal is to increase our understanding of the complex, multi time scale physical interactions between light and matter and their related photo-responsive processes, thus leading to the development of next generation materials for time domain spectroscopy THz sources.
What is the major research question? Describe here briefly the problem to be solved by the research, the starting hypothesis, and the questions addressed by the experiments. FemtoTera will develop an innovative ultrashort pulse Terahertz (THz) generation scheme, using nanostructured semiconductor/metal surfaces and ultrashort NIR laser pulses to efficiently generate THz radiation. Reliable THz pulses can be obtained by interaction of laser light with semiconductor and semiconductor/metal interfaces. However, the possibility to use, instead of bare semiconductor surfaces, quantum nanostructures would introduce a large flexibility, owing to quantum confinement effects, allowing for the manipulation of the emission over the region from several to hundreds of microns. The FemtoTera project will study plasmon-enhanced emission from intraband transition that takes place, when irradiated with femtosecond laser pulses, on surfaces functionalized with self-assembled QD molecules (QDMs) coupled to a MNPs. THz radiation emission, with a frequency corresponding to the QD molecule interlevel spacing is expected. Innovative fabrication schemes (Droplet Epitaxy - DE) based on advanced Molecular Beam Epitaxy procedures for the self assembly and self-alignment of QDM and MNP will be implemented by FemtoTera. DE offers the unique opportunity to realize both QDM and MNP within the same bottom-up approach and platform, thus allowing the fabrication of large functionalized surfaces for efficient THz generation. FemtoTera expected results: i) Bottom-up nano-structuring of semiconductor surface with QDM-MNP coupled systems ii)
What is the significance of the research? Describe the new perspectives opened by the results achieved, including the scientific basics of potential societal applications. Please describe the unique strengths of your proposal in comparison to your domestic and international competitors in the given field. Understanding the physical phenomena taking place within the QDM-MNP complex during laser irradiation iii) Nano-engineering of QDM-MNP systems to meet THz generation requirements, in terms of intensity and frequency. iv) Study of THz generation from semiconductor surfaces functionalized with QDM-MNP complex under NIR ultrafast laser irradiation.
Summary and aims of the research for the public Describe here the major aims of the research for an audience with average background information. This summary is especially important for NRDI Office in order to inform decision-makers, media, and others. Basic research in nano science
Zárójelentés
kutatási eredmények (magyarul)
Az NN114457-es projekt összefoglalója
A projektünk célja THz sugárzás generálása volt nano-strukturált felületen lézeres besugárzás hatására. THz-es sugárzás generálásának egyik leghatékonyabb módja a femtoszekundumos közeli-infravörös lézersugárzással gerjesztett nano-struktúrált félvezető/fém felület. A nano-strukturált felület önszerveződéssel előállított kvantum-pont-molekulát és hozzá pozicionált fémes-nano-részecskét jelent.
A projekt négy fő stádiumból állt:
Az első stádium: A lentről felfelé történő építkezéssel a kvantum-pont-molekula és a fémes-nano-részecske komplex kifejlesztése csepp epitaxiával.
A második stádium: A funkcionalizált nano-struktúra komplex femtoszekundumos lézerbesugárzás hatására létrejövő plazmonnal segített belső átmenetekből származó emissziójának vizsgálata.
A harmadik stádium: A kvantum-pont-molekulával csatolt fémes-nano-részecske optimalizálása THz-es sugárzás generálása céljából.
A negyedik stádium: A THz generációjának a vizsgálata a fentebb említett gerjesztéssel a nano-struktúrált felületen.
A projekt mind a négy tervezett stádiumot abszolválta. A tervezetben megcélzott kvantum-pont-molekulát és fém-nano-részecske komplex konfigurációt a második fordulóban sikerült megvalósítani, így a tervezett harmadik neki futás nem volt szükséges. Az időközi jelentéseket időben elkészítettük és a partnerekkel megosztottuk. A projekt eredményeit referált tudományos folyóiratban publikáljuk.
kutatási eredmények (angolul)
Summary of the NN114457
The aim of the project was THz radiation generation on nano-structured surface by laser irradiation. One of the effective way of the THz generation is femtosecond near-infrared laser irradiation on nano-structured semiconductor/metal surfaces. The nano-engineered surface system means self-assembled semiconductor quantum-dot-molecules with metal-nano-particles.
The project had four main stages:
Stg 1: Development of bottom-up nano-structured semiconductor surface with coupled quantum-dot-molecule and metal-nano-particle systems by droplet epitaxy.
Stg 2: Investigation of plasmon-enhanced emission from the intraband transitions that takes place, when irradiated with femtosecond laser pulses, on surfaces functionalized with self-assembled quantum-dot-molecule coupled to metal-nano-particle.
Stg 3: Optimizing of the quantum-dot-molecule coupled with metal-nano-particle system to meet THz generation requirements.
Stg 4: Investigation of THz generation from semiconductor surfaces functionalized with nano-structure complex under near-infra-red ultrafast laser irradiation
The project fulfilled all of the stages planned. The targeted quantum-dot-molecule with metal-nano-particle complex was obtained within the second round, thus making the planned third run not necessary. For all the deliverables, internal reports have been shared among the partners and the results will be the subject of scientific publications on peer-reviewed international journals.
Ákos Nemcsics, Bálint Pődör, Lajos Tóth, János Balázs, László Dobos, János Makai, Márton Csutorás, Antal Ürmös: Investigation of MBE grown inverted GaAs quantum dots, Microelectronics Reliability 59, pp. 60-63. (2016), 2016
Antal Ürmös, Zoltán Farkas, Ákos Nemcsics: Modeling of III-V-based Nanohole Filling, Acta Polytechnica Hungarica 17 pp. 91-111. (2017), 2017