Algebra és algoritmusok  részletek

súgó  nyomtatás 
vissza »

 

Projekt adatai

 
azonosító
115288
típus K
Vezető kutató Rónyai Lajos
magyar cím Algebra és algoritmusok
Angol cím Algebra and algorithms
magyar kulcsszavak algebra, algoritmusok, kombinatorikai és számelméleti alkalmazások, algebrai sokaságok, reprezentációk
angol kulcsszavak algebra, algorithms, combinatorial and number theoretical applications, algebraic varieties, representations
megadott besorolás
Matematika (Műszaki és Természettudományok Kollégiuma)100 %
Ortelius tudományág: Algebra
zsűri Matematika–Számítástudomány
Kutatóhely Algebra Tanszék (Budapesti Műszaki és Gazdaságtudományi Egyetem)
résztvevők Héthelyi László
Horváth Erzsébet
Ivanyos Gábor
Kiss Sándor
Küronya Alex
Magyar András
Nagy Attila
Nagy Gábor Péter
Szoke Magdolna
Zubor Márton
projekt kezdete 2016-02-01
projekt vége 2021-01-31
aktuális összeg (MFt) 8.376
FTE (kutatóév egyenérték) 16.47
állapot lezárult projekt
magyar összefoglaló
A kutatás összefoglalója, célkitűzései szakemberek számára
Itt írja le a kutatás fő célkitűzéseit a témában jártas szakember számára.

Célunk elméleti és algoritmikus módszerek alkalmazása, valmint új algoritmusok létrehozása az alábbi kutatási témákban:

1. Explicit izomorfizmusok
2. Érintő hengerek
3. Hálózati kommunikáció matematikai módszerei
4. A kommutatív algebra kombinatorikai alkalmazásai
5. Algebrai sokaságok
6. Rejtett algebrai tulajdonságok vizsgálata
7. Félcsoportok, csoportok és algebrák reprezentációi
8. Additív számelméleti problémák

Doktoranduszok bevonásával segítjük a tudományos utánpótlásnevelést.

Mi a kutatás alapkérdése?
Ebben a részben írja le röviden, hogy mi a kutatás segítségével megválaszolni kívánt probléma, mi a kutatás kiinduló hipotézise, milyen kérdéseket válaszolnak meg a kísérletek.

Célunk elméleti és algoritmikus eredmények elérése, új algoritmusok létrehozása azalábbi területeken:
1. Explicit izomorfizmusok konstruálása (gyakorlati algoritmusok n<6 dimenzióra a racionális valamint kis kvadratikus számtestekre, kvaterniókra, reprezentációelméleti alkalmazások, normaegyenletek megoldása)
2. Új henger-konfigurációk konstrukciója, felső becslések.
3. Élhibák azonosítása optikai hálózatokban.
4. A kommutatív algebra kombinatorikai alkalmazásai (Gröbner-bázisok, standard monomok, nullahely tételek alkalmazása extremális halmazrendszerek vizsgálatára)
5. Algebrai sokaságok vizsgálata (Newton-Okounkov testek és egyenesnyalábok lokális pozitivítása közötti kapcsolat, mozgó Seshadri-konstansok)
6. Rejtett algebrai tulajdonságok algoritmikus vizsgálata (rejtett részcsoport probléma nem kommutatív csoportokra, kvantum-algoritmusok,
lineáris csoportok, mátrix rangok, izomorfizmus-probléma)
7. Félcsoportok, csoportok és algebrák reprezentációi (permutálható félcsoportok, reduktív félcsoportok, Leavitt-féle útalgebrák és
inverz félcsoportok, dualítási kérdések, Koszul-tulajdonság, partíció részcsoportok, mélység)
8. Additív számelméleti problémák (Sidon-halmazok, aszimptotikus bázis, Erdős-Freud sejtés)

Mi a kutatás jelentősége?
Röviden írja le, milyen új perspektívát nyitnak az alapkutatásban az elért eredmények, milyen társadalmi hasznosíthatóságnak teremtik meg a tudományos alapját. Mutassa be, hogy a megpályázott kutatási területen lévő hazai és a nemzetközi versenytársaihoz képest melyek az egyediségei és erősségei a pályázatának!

A fenti témák a nemzetközi kutatások fontos kutatási területei. Néhány alkalmazás:

1. Reprezetációelméleti alkalmazások, normaegyenletek megoldása.
2. Új kísérleti matematikai eljárások adódnak.
3. Mérnőki valamint hálózati alkalmazások.
4. Kombinatorikai alkalmazások.
5. A projektív sokaságok lineáris rendszerei aszimptotikus elméletében alkalmazható.
6. Algoritmuselméleti alkalmazások az algebra, a reprezentációelmélet és a számítástudomány területén.
7. Algebrai és reprezentációelméleti alkalmazások.
8. Új valószínűségi, kombinatorikus és analitikus módszerek, számelméleti és számítástudományi alkalmazások.

A kutatás összefoglalója, célkitűzései laikusok számára
Ebben a fejezetben írja le a kutatás fő célkitűzéseit alapműveltséggel rendelkező laikusok számára. Ez az összefoglaló a döntéshozók, a média, illetve az érdeklődők tájékoztatása szempontjából különösen fontos az NKFI Hivatal számára.

Célunk algebrai struktúrák elméleti és algoritmikus tanulmányozása. A kutatások eredményei egyrészt az elméletet gazdagítják, másrészt új algoritmusok, melyeknek mérnöki gyakorlati alkalmazásai vannak és szimbolikus számítási szoftverekbe is beépülnek.
Az elméleti eredményeket tudományos folyóiratokban valamint konferenciákon publikáljuk.
A doktoranduszok részvételével segítjük a tudományos utánpótlás képzést.
angol összefoglaló
Summary of the research and its aims for experts
Describe the major aims of the research for experts.

Our aim is to obtain theoretical and algorithmic results, and construct new algortihms in the following research areas:

1. Explicit isomorphisms
2. Touching cylinders
3. Mathematical methods in communication engineering
4. Combinatorial applications of commutative algebra
5. Algebraic varieties
6. Investigation of hidden algebraic properties
7. Representations of semigroups, groups and algebras
8. Problems in additive number theory

Two PhD students will take part in our project. In this way we contribute to the development of talented young colleagues.

What is the major research question?
Describe here briefly the problem to be solved by the research, the starting hypothesis, and the questions addressed by the experiments.

Our aim is to obtain theoretical and algorithmic results, and construct new algorithms in the following research areas:

1. Constructing explicit isomorphisms (practical algorithms for dimension $n<6$ for the rationals and for
small quadratic fields, for quaternions, applications in representation theory, solution of norm equations)
2. Develop new configurations of touching cylinders.
3. Study mathematical and algorithmic problems in communication engineering (improve error detecting techniques, development of algebraic methods)
4. Combinatorial applications of commutative algebra (applications of Grőbner bases, standard monomials and combinatorial
Nullstellensatz to the investigation of extremal set families)
5. Investigation of algebraic varieties (the relation between the local positivity of line bundles and Newton-Okounkov bodies, their relation
with moving Seshadri constants)
6. Algorithmic investigations of hidden algebraic structures (hidden subgroup problem for non-commutative groups, quantum-algorithms,
linear groups, matrix rank, isomorphism problem)
7. Representations of semigroups, groups and algebras (permutable semigroups, reductive semigroups, relation between the Leavitt path algebra and inverse semigoups, duality questions, Koszul-property, partition subgroups, depth of subgroups)
8. Problems in additive number theory (Sidon-sets, asymptotic bases, Erdős-Freud conjecture)

What is the significance of the research?
Describe the new perspectives opened by the results achieved, including the scientific basics of potential societal applications. Please describe the unique strengths of your proposal in comparison to your domestic and international competitors in the given field.

The above topics are in the focus of international research interest. Some applications:


1. Applications in representation theory, applications in finding zero divisors.
2. Novel methods in experimental mathematics.
3. Applications in network systems and egineering.
4. Applications in combinatorics.
5. Can be applied in the asymptotic theory of linear systems of projective algebraic varieties.
6. Application of algorithm theory in algebra, representation theory and computer science.
7. Applications in algebra and representation theory.
8. New probabilistic, combinatorial and analytic methods, applications in number theory and computer science.

Summary and aims of the research for the public
Describe here the major aims of the research for an audience with average background information. This summary is especially important for NRDI Office in order to inform decision-makers, media, and others.

Our aim is to study algebraic structures with theoretical and algebraic methods. Our research can be applied both in theoretical mathematics
and in algorithm theory. Some of them are programmable algorithms, that later can be built in symbolic softwares like (GAP, Magma etc), or
will be applied in netwrok engineering.

Theoretical results will be published in scientific journals and conferences.
Participation of PhD students supports the development of young researchers.





 

Zárójelentés

 
kutatási eredmények (magyarul)
A következő témákban végeztünk kutatásokat: 1. Egyszerű algebrák explicit izomorfizmusai, kvadratikus formák izometriái 2. Hálózati kommunikáció matematikai módszerei Hálózati hibák, Bloom filterek, szó beágyazások, véges állapotú automaták, mondathossz. 3. Kommutatív algebra és algebrai geomatria kombinatorikai alkalmazásai Seshardri-konstansok, Sperner-családok, extremális vektorrendszerek, norma gráfok, valós algebrai halmazok, érintő hengerek, Hermite-kódok, unitálok, Steiner-rendszerek. 4. Rejtett algebrai tulajdonságok vizsgálata Lineáris mátrixok nem kommutatív rangja, kvantumalgoritmusok, lineáris függvények tanulása, követlményteljesítési feladat. 5. Félcsoportok, csoportok és algebrák reprezentációi Félcsoportok: permutálható félcsoportok, egyszerű félcsoportok, kongruenciák ultraszorzatokon, félháló felbonthatatlan félcsoportok, Cohn-beágyazás, középső egységek, kongruencia felcserélhető G-halmazok. Csoportok: csoportok és fúziós rendszerek, Maschke-tulajdonság, csoportok mélysége, grafikus Frobenius- reprezentációk. Algebrák: Koszul algebrák, rétegezett modulusok, fixpont algebrák. 6. Additív számelméleti problémák Additív reprezentációfüggvények, Sidon-halmazok és bázisok, komplementumok, egész gyök keresés.
kutatási eredmények (angolul)
We carried out investigations in the following directions: 1. Explicit isomorphisms of central simple algebras and isometries of quadratic forms. 2. Mathematical methods in communication egineering Failures of communication networks, Bloom filters, Multi-sense word embeddings, Learning of weights of a finite state automaton, Sentence length. 3. Combinatorial applications of commutative rings and algebraic geometry Seshadri constants, Sperner families, Extremal vector sytems, Properties of norm graphs, Real algebraic sets, Touching cylinders, Hermitian Codes, Abstract unitals, Steiner systems. 4. Algorithms on hidden algebraic properties Non-commutative rank of linear marices, Quantum algorithmic applications, Learning linear functions, Constraint satisfaction problems. 5. Representations of semigroups, groups and algebras Semigroups: semigroup algebras of permutable semingroups, simple semigroups, congruences on ultraproducts, semilattice indecomposable semigroups, Cohn embedding, middle units, congruence permutable G-sets. Representations of groups: groups and fusion systems, Maschke-property, depth of subgroups, graphical Frobenius representations. Representations of algebras: Koszul algebras, stratified modules, fixed point algebras. 6. Problems in additive number theory Representation functions, Sidon sets and bases, additive complements, integer root finding.
a zárójelentés teljes szövege https://www.otka-palyazat.hu/download.php?type=zarobeszamolo&projektid=115288
döntés eredménye
igen





 

Közleményjegyzék

 
Breuer T; Héthelyi L; Horváth E; Külshammer B: The Loewy Structure of Certain Fixpoint Algebras, Part II, arXiv:1912.03065 Preprint, 2019
Breuer T., Héthelyi L., Horváth E., Külshammer B.: The Loewy Structure of Certain Fixpoint Algebras, Part I, JOURNAL OF ALGEBRA (2019) https://doi.org/10.1016/j.jalgebra.2019.05.004, 2019
Janabi H A; Breuer T, Horváth E: Subgroups of arbitrary even ordinary depth, arXiv:1902.00512 Preprint, 2019
Janabi H A; Héthelyi L; Horváth E: TI subgroups and depth 3 subgroups in Suzuki groups, Manuscript, 2020
Borbély G; Kornai A: Learning of weights of a finite state automaton, software., https://github.com/hlt-bme-hu/w-fsa, 2019
Mezőfi D; Nagy G P: On the geometry of full points of abstract unitals,, Des. Codes. Cryptogr. no. 12, 2967-2978, DOI 10.1007/s10623-019-00658-1,arxiv.org/abs/1903.06247, 2019
Ivanyos G; Qiao Y; Subrahmanyam K.V.: Constructive non-commutative rank is in deterministic polynomial time, Proc. ITCS 2017, to appear in Leibniz International Proceedings in Informatics (open access). Vol 67, Art. No. 55. http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.55, 2017
Nagy A;: On congruence permutable G-sets, Commentationes Math. Univ. Carolinae Vol.61 (2020) issue 2, 139-145., 2020
Kiss S.; Sándor Cs. and Quan-Hui Yang: On minimal additive complements of integers, Journal of Combinatorial Theory Ser A 162 (2019) 344-353. (arxiv:1703.03242 preprint 2017), 2019
Kiss S.; Sándor Cs; and Quan-Hui Yang: On a conjecture of Erdős about sets without k pairwise coprime integers, SIAM Journal of Discrete Math. 32 (2018) 2453-2466.(arxiv:1705.05730 preprint 2017), 2018
Kiss S.; Sándor Cs.: On the structure of sets which have coinciding representation functions, INTEGERS 19 (2019) A66, 29pp (arxiv:1702.04499 preprint 2017), 2019
Nagy A, Tóth Cs: On the right colon congruence of the kernel of the right regular representation of a semigroup, Preprint, 2019
Kiss S; Sándor Cs: Generalizations of some results about the regularity properties of an additive representation function, Acta Mathematica Hungarica, 157 (2019) 121-140. (preprint: https://arxive.org/abs/1804.07560), 2019
Nagy A; Nagy O: A construction of semigroups whose elements are middle units, International Journal of Algebra, Vol 14 (2020) no. 3, 163-169., 2020
Nagy A: On an embedding theorem of Cohn, Preprint, 2019
Nagy A: On the Right Colon Ideal of the Right Annihilator of a Ring, Preprint, 2019
Ivanyos G; Qiao Y: Algorithms based on *-algebras, and their appl. to isom. of polynomials with one secret, group isomorphism, and poly. identity testing, SIAM Journal of Computing 48 926-963, https://doi.org/10.1137/18M1165682,https://arxiv.org/abs/1708.03495(v3), 2019
Kiss S; Sándor Cs: Generalized asymptotic Sidon basis, Discrete Mathematics, 344 (2021) 112208, 5pp., 2021
Kiss S; Sándor Cs: Generalized sidon sets of perfect powers, arXiv:2006.02783 , submitted., 2020
Khalfaoul S. El; Nagy G. P: On the dimension of the subfield subcodes of 1-point Hermitian codes, Advances in Math. of Communications, 2021, 15(2): 219-226. DOI 10.3934/amc.2020054, arxiv.org/abs/1906.10444, 2021
Breuer T; Héthelyi L; Horváth E; Külshammer B: The Loewy Structure of Certain Fixpoint Algebras, Part II, InternationaL Electronic Journal of Algebra accepted. arXiv:1912.03065 Preprint, 2021
Breuer T., Héthelyi L., Horváth E., Külshammer B.: The Loewy Structure of Certain Fixpoint Algebras, Part I, JOURNAL OF ALGEBRA 558 (2020) 199-220, https://doi.org/10.1016/j.jalgebra.2019.05.004, 2020
Janabi H A; Breuer T, Horváth E: Subgroups of arbitrary even ordinary depth, International Journal of Group Theory doi 10.22108/IJGT.2020.123551.1628 arXiv:1902.00512 Preprint, 2020
Janabi H A; Héthelyi L; Horváth E: TI subgroups and depth 3 subgroups in Suzuki groups, Journal of Group Thoery https://doi.org/10.1515/jgth-2020-0044 open access, 2020
Mezőfi D; Nagy G P: On the geometry of full points of abstract unitals,, Des. Codes. Cryptogr. Vol 87 no. 12, 2967-2978, DOI 10.1007/s10623-019-00658-1,arxiv.org/abs/1903.06247, 2019
Kiss S.; Sándor Cs.: On a problem of Chen and Fang related to infinite additive complements, Manuscript, submitted. arXiv:2012.09675 , 2020
Kiss S.; N.V. Hung: On asymptotic bases which have distinct subset sums, Manuscrpit, submitted., 2021
Kiss S.: Sidon sets and bases (meghivott előadás), CANT 2020, Június 1-5. httpÉwww.theoryofnumbers.com-cant-, 2020
Pasic A; Babarczi P; Tapolcai J; Bérczi-Kovács E; Király Z; RÓNYAI L: Minimum Cost Survivable Routing Algorithms for Generalized Diversity Coding, IEEE-ACM Transactions on Networking 28: 1 pp. 289-300. 12. p., 2020
Tapolcai J; RÓNYAI L; Vass B; Gyimóthi L: Fast Enumeration of Regional Link Failures Caused by Disasters With Limited Size, IEEE-CM Transactions of Networking 28: 6 pp. 2421-2434, 14 p., 2020
Vass B; Tapolcai J; Heszberger Z; Biró J; Hay D; Kuipers F. A.; Oostenbrink J; Valentini A; RÓNYAI L: Probabilistic Shared Risk Link Groups Modelling Correlated Resource Failures Caused by Disasters, accepted by IEEE Journal on Selected Areas in Communications, 2021
Tapolcai J; Hajdú Zs; Pasic A; Ho P-H; RÓNYAI L: On Network Toppology Augmentation for Global Connectivity under Regional Failures, accepted for the conference IEEE INFOCOM 2021, 10 pp;, 2021
Hegedűs G; RÓNYAI L: An upper bound for the size of s-distance sets in real algebraic sets, Manuscrpit 2020, 15 p., 2020
Khalfaoui, S. El, Nagy G.P.: Estimating the Dimension of the Subfield Subcodes of Hermitian Codes, Acta Cybernetica Vol 24 No 4 DOI: 10.14232/actacyb.285453, 2020
Mezőfi D; Nagy G.P.: New steiner 2-designs from old ones by paramodifications, Discrete Applied Mathematics Volume 288, 15 January 2021, Pages 114-122, 2021
Kiss R; Nagy G. P.: On the nonexistence of certain orthogonal arrays of strength four, To appear in Prikladnaya Diskretnaya Matematika. 2021.https://arxiv.org/abs/2011.09935, 2021
Korchmáros G; Nagy G.P.: Graphical Frobenius representations of non-abelian groups, To appear in Ars Mathematica Contemporanea. 2020.https://arxiv.org/abs/1909.03690, 2020
Nagy G.P.: Embeddings of Ree unitals in a projective plane over a field, https://arxiv.org/abs/2007.10464, 2020
Khalfaoui S.El; Nagy G. P.: GAP package HERmitian, Version 0.1 (GAP package),, https://github.com/nagygp/Hermitian, 2019
Janabi H.A.: Group Theory (based on the lectures of. E. Horváth), https://algebra.math.bme.hu/projektek, 2020
Janabi H.A; Breuer T, Horváth E: Construction of subgroups of ordinary depth 2^n, Submitted to Conference Volume Spring Wind Conference 2020 (online), 2020
Borbély G; Kornai A; Kracht M; Nemeskey D.M.: Denoising composition in ditributional sematics, poster., 28th European Summer School in Logic, 2016
Borbély G; Kornai A: Sentence length, Proceedings of the 16th Meeting on the Mathematics of Language, Toronto, 2019
Khalfaoul S. El; Nagy G. P: On the dimension of the subfield subcodes of 1-point Hermitian codes, Advances in Math. of Communications, to appear. DOI 10.3934/amc.2020054, arxiv.org/abs/1906.10444, 2020
Mezőfi D. ; Nagy G. P.: Algorithms and libraries of abstract unitals and their embeddings, Version 0.5 (GAP package), https://github.com/nagygp/UnitalSZ, 2018
Bayer T; Mészáros T; Rónyai L; Szabó T: Exploiting projective norm graphs, Acta Math. Univ. Comenianae Vol LXXXVIII 3 (2019) 437-441, EUROCOMB 2019, 2019
Héthelyi L; Horváth E; Petényi F: The depth of maximal subgroups of Ree groups, Communications of Algebra, 47/1 (2019), 37-66. https://doi.org/10.1080/00927872.2018.1461885 appeared online Jan 14, 2019(preprint:https://arxiv.org/abs/1608.06774 ), 2019
Nagy A;: On congruence permutable G-sets, arxiv:1801.04551 preprint, Commentationes Math. Univ. Carolinae, elfogadva., 2020
Nagy A; Tóth Cs: On the probability that two elements of a finite semigroup have the same right matrix, arxiv:1601.08742v3, 2020
Kiss S. ; Sándor Cs. and Quan-Hui Yang: On generalized Stanley sequences, Acta Mathematica Hungarica, 154/2 501-510, 2018
Héthelyi L; Szőke M: Realisability of p-stable fusion systems, Journal of Algebra 521 247-256., 2019
Nagy A: On special Rees matrix semigroups over semigroups, arXiv:1609.09821 Preprint, 2019
Nagy A: A subdirect decomposition of a semigroup of all fuzzy sets of a semigroup, arXiv:1601.06742v2 Preprint, 2019
Ivanyos G; Kutas P; Rónyai L: Explicit equivalence of quadratic forms over Fq(t), Finite Fields and Their Applications 55, 33-63. (preprint: https://arxiv.org/abs/1610.08671), 2019
Korchmáros G; Nagy G. P; Timpanella, M: Codes and gap sequences of Hermitian curves, IEEE Transactions on Information Theory, posted on 2019 DOI 10.1109/TTT.2019.2950207, 2019
Héthelyi L; Szőke M; Yakimova O: Fusion sytems of Lie algebras, Manuscript, 2019
Nagy A; Nagy O: A construction of semigroups whose elements are middle units, Preprint, 2019
Nagy A: On a Cohn's embedding theorem, Preprint, 2019
Nagy A: On special Rees matrix rings related to the right annihilator of rings, Preprint, 2019
Ivanyos G; Qiao Y: Algorithms based on *-algebras, and their appl. to isom. of polynomials with one secret, group isomorphism, and poly. identity testing, SIAM Journal of Computing 48 926-963, https://arxiv.org/abs/1708.03495(v3), 2019
Kiss S; Sándor Cs: Generalized asymptotic Sidon basis, Manuscript, submitted., 2020
Kiss S; Sándor Cs: On the number of representations of integers as a quadratic form, Manuscript, 2020
Kiss S; Rónyai L; Tapolcai J; Hosszú É: On the cost of avoiding false positives in bloom filters, Manuscript, 2020
Kiss S; Kós G; Rónyai L: A note on integer root finding algorithms of polynomials, Manuscript, 2020
Kiss S: A problem of Erdős about sets without pairwise coprime integers, CANT 2019, May 21-24, CUNY Graduate Center, New York, 2019
Kiss S: On minimal additive complements of integers, Journées Arithmetiques, 2019 July 1-5, Istambul, 2019
Kiss S; Sándor Cs: On the structure of sets which have coinciding representation functions, INTEGRES, to appear., 2020
Tapolcai J; Rónyai L; Vass B; Gyimóthy L: List of Shared Risk Link Groups Representing Regional Failures with Limited Size, Proc. IEEE INFOCOM, Atlanta, USA, accepted., 2017
Ivanyos G; Kutas P; Rónyai L: Explicit equivalence of quadratic forms over F_q(t), Preprint Arxiv 1619.08671, 2016
Ivanyos G; Kutas P, Rónyai L: Computing explicit isomorphisms with full matrix algebras over F_q(x),, Foundations of Computational Mathematics, DOI 10.1007/s10208-017-9343-2 Accepted, 2016
Hegedűs G; Rónyai L: A note on linear Sperner families., Algebra Universalis, submitted., 2016
Nagy Attila: Left equalizer simple semigroups, ACTA MATHEMATICA HUNGARICA 148: (2) pp. 300-311., 2016
Nagy A; Zubor M: A Note on Semigroup Algebras of Permutable Semigroups, COMMUNICATIONS IN ALGEBRA 44: (11) pp. 4865-4873., 2016
Nagy Attila: On Congruences on Ultraproducts of Algebraic Structures, INTERNATIONAL JOURNAL OF ALGEBRA 10: (1) pp. 13-17., 2016
Ivanyos G; Qiao Y; Subrahmanyam K.V.: Non-commutative Edmonds' problem and matrix semi-invariants, Computational Complexity, in press. http://dx.doi.org/10.1007/s00037-016-0143-x, 2017
Kiss S; Sándor Cs: On the multiplicativity of the linear combination of additive representation functions, Ramanujan Journal, DOI 10.1007/s11139-016-9811-3 accepted, 2016
Kiss S; Sándor Cs: Partitions of the set of nonnegative integers with the same representation functions, Discrete Mathematics accepted, 2016
Lukács E; Magyar A: Standard Koszul standardly stratified algebras, Comm. Alg. 45(3) 1270–1277, 2017
Lukács E; Magyar A: Stratified modules over an extension algebra, Czechoslovak Mathematical Journal accepted, 2016
Zubor, M: Semilattice Indecomposable Finite Semigroups With Large Subsemilattices, Acta Math. Hungar. 150: 512. doi:10.1007/s10474-016-0657-3, 2016
Borbély G; Kornai A; Makrai M;Nemeskey D.M.: Evaluating multi-sense embeddings for semantic resolution monolingually and in word translation, RepEval workshop at ACL Berlin, 2016
Héthelyi L; Horváth E; Petényi F: The depth of maximal subgroups of Ree groups, Arxiv Preprint1608.06774, 2016
Lukács E; Magyar A: Gyűrűk és csoportok reprezentációelmélelete I, Manuscript in Hungarian, 2016
Lukács E; Magyar A: Gyűrűk és csoportok reprezentációelmélete II., Manuscript in Hungarian, 2016
Ivanyos G; Qiao Y; Subrahmanyam K.V.: Constructive non-commutative rank is in deterministic polynomial time, Proc. ITCS 2017, to appear in Leibniz International Proceedings in Informatics (open access)., 2017
Dumnicki M; Küronya A; Maclean C; Szemberg T: Seshadi constants via functions on Newton-Okounkov bodies, Mathematische Nachrichten 289 (17-18) 2173-2177, 2016
Dumnicki M; Küronya A; Maclean C; Szemberg T: Rationality of Sesadri constants and the Segre-Harbourne-Gimigliano-Hirschowitz Conjecture, Advances in Mathematics 303 1162-1170, 2016
Tapolcai J; Rónyai L; Vass B; Gyimóthy L: List of Shared Risk Link Groups Representing Regional Failures with Limited Size, Proc. IEEE INFOCOM, Atlanta, USA http://ieeexplore.ieee.org/document/8057040/, 2017
Ivanyos G; Qiao Y; Subrahmanyam K.V.: Non-commutative Edmonds' problem and matrix semi-invariants, Computational Complexity 26 717--763. http://dx.doi.org/10.1007/s00037-016-0143-x, 2017
Kiss S; Sándor Cs: On the multiplicativity of the linear combination of additive representation functions, The Ramanujan Journal, (44) No. 2, 385--399. DOI 10.1007/s11139-016-9811-3, 2017
Kiss S; Sándor Cs: Partitions of the set of nonnegative integers with the same representation functions, Discrete Mathematics 340 No. 6, 1154--1161., 2017
Lukács E; Magyar A: Stratified modules over an extension algebra, Czechoslovak Mathematical Journal 546/16 (6845) 26p, 2017
Zubor, M: Semilattice Indecomposable Finite Semigroups With Large Subsemilattices, Acta Math. Hungar. 150: (2) 512-523. 512. doi:10.1007/s10474-016-0657-3, 2016
Borbély G; Kornai A; Makrai M;Nemeskey D.M.: Evaluating multi-sense embeddings for semantic resolution monolingually and in word translation, Proceedings of the 1st Workshop on Evaluating Vector-Space Representations for NLP. ACL Belin 83--89. doi 10.18653/v1/W16-2515., 2016
Ivanyos G; Qiao Y; Subrahmanyam K.V.: Constructive non-commutative rank is in deterministic polynomial time, Proc. ITCS 2017, to appear in Leibniz International Proceedings in Informatics (open access). Vol 67, Art. No. 55. http://dx.doi.org/10.4230/LIPcs.ITCS.2017.55, 2017
Nagy A;: Remarks on Graphons, arxiv:1801.04555 preprint, 2018
Nagy A;: On congruence permutable G-sets, arxiv:1801.04551 preprint, 2018
Nagy A;: On the probability that two elements of a finite semigroup have the same right matrix, arxiv:1601.08742v2, Beküldve Int. Journal of Alg. and Comp., 2018
Kiss S. ; Sándor Cs. and Quan-Hui Yang: On generalized Stanley sequences, Acta Mathematica Hungarica, közlésre elfogadva, 2018
Kiss S,; Csaba S. and Quan-Hui Yang: On minimal additive complement of integers, arxiv:1703.03242 preprint, 2017
Kiss S.; Sándor Cs; and Quan-Hui Yang: On a conjecture of Erdős about sets without k pairwise coprime integers, arxiv:1705.05730 preprint, 2017
Kiss S.; Sándor Cs.: On the structure of sets which have coinciding representation functions, arxiv:1702.04499 preprint, 2017
Ivanyos G.; Qiao Y.: Algorithms based on *-algebras, and their applications to isomorphism of polynomials with one secret, group isomorphism, and polynomial identity testing, Proc. Soda 2357--2376. https://doi.org/10.1137/1.9781611975031.152, 2018
Bozóki S; Rónyai L; Tsung-Lin Lee: Páronként érintkező hengerek, In: Talata I (szerk.) Matematikát, Fizikát és Informatikát Oktatók 41. Orsz. Konf. 269 p. Szent István Egy. Ybl M. Építéstud. Kar, 2017. pp. 59-66,ISBN:978-963-269-662-1, 2017
Babarczi P; Tapolczai J; Pasic Alija; Rónyai L; Bérczi-Kovács E; Médard M: Diversity Coding in Two-Connected Networks, IEEE-ACM TRANSACTIONS ON NETWORKING 25:(4) pp. 2308-2319., 2017
Mészáros T; Rónyai L: Standard Monomials and Extremal Vector Systems, ELECTRONIC NOTES IN DISCRETE MATHEMATICS 61:(C) pp. 855-861. https://ac.els-cdn.com/S1571065317302111/1-s2.0-S1571065317302111-main.pdf?_tid=43d21f98-f611-11e7-8dd9-00000, 2017
Green D; Héthelyi L; Horváth E: The Maschke-property for the Sylow p-subgroups of the symmetric group S p n ., International Journal of Group Theory Doi: 10.22108/IJGT.2017.21610, 2017
Horváth E: Depth of subgroups in finite groups, Groups St Andrews in Birmingham 2017, 10 August. http://www.groupsstandrews/2017/slides/, 2017
Horváth E: Véges csoportok reprezentációi: monomialitásról,blokkokról és mélységről, habilitációs tézisek, BME TTK Matematika Intézet, 2017
Héthelyi L; Szőke M and Zalesski A. E: On p-stability in groups and fusion systems, Journal of Algebra 492 253–297 http://www.sciencedirect.com/science/article/pii/S0021869317304830, 2017
Kiss S: On the structure of sets which have coinciding representation functions, Workshop on Combinatorial and Additive Number Theory (CANT 2017), May 23-26, 2017, CUNY Graduate Center, 365 Fifth Avenue, New York USA. Invited speaker., 2017
Kiss S: On the structure of sets which have coinciding representation functions, Vilnius Conference in Combinatorics and Number Theory Vilnius, Lithuania July 16 - July 22, 2017., 2017
Kiss S: Sidon sets and bases, The music of numbers, a conference in honor of Javier Cilleruelo, September 20-22, 2017, Instituto de Ciencias Matemáticas (ICMAT)) in Madrid Invited speaker., 2017
Horváth E: Some questions on the depth of subgroups of finite groups, GTG Budapest BME 03.02. 2017, 2017
Horváth E: Depth of maximal subgroups of Ree groups, Darstellungstheorietage in Wuppertal 27-28 .1.2017, 2017
Ivanyos G; Kutas P, Rónyai L: Computing explicit isomorphisms with full matrix algebras over F_q(x), Foundations of Computational Mathematics, 18/2 381-397. DOI 10.1007/s10208-017-9343-2 (preprint: http://arxiv.org/abs/1508.07755), 2018
Hegedűs G; Rónyai L: A note on linear Sperner families., Algebra Universalis 79 / 2 1420-8911, 2018
Héthelyi L; Horváth E; Petényi F: The depth of maximal subgroups of Ree groups, Communications of Algebra, appeared online Jan 14, 2019(preprint:https://arxiv.org/abs/1608.06774 ), 2019
Kiss S. ; Sándor Cs. and Quan-Hui Yang: On generalized Stanley sequences, Acta Mathematica Hungarica, accepted., 2018
Green D; Héthelyi L; Horváth E: The Maschke-property for the Sylow p-subgroups of the symmetric group S p n ., International Journal of Group Theory, Article 5, Vol 7, Issue 4, 41-64 Doi: 10.22108/IJGT.2017.21610, 2018
Héthhelyi L; Szőke M: Realisability of p-stable fusion systems, Journal of Algebra 521 247-256., 2019
Nagy A: On special Rees matrix semigroups over semigroups, arXiv:1609.09821 Preprint, 2019
Nagy A: A subdirect decomposition of a semigroup of all fuzzy sets of a semigroup, arXiv:1601.06742v2 Preprint, 2019
Ivanyos G; Qiao Y; Subrahmanyam K.V.: Constructive non-commutative rank is in deterministic polynomial time, Computational Complexity 27 561-593., 2018
Ivanyos G; Prakash A; Santha M: On learning linear functions from subset and its applications in quantum computing, Proc. ESA LIPIcs Vol. 112, Art. No. 66, 2018
Ivanyos G; Kulkarni R; Qiao Y; Santha M; Sundaram A: On the complexity of trial and error for constraint satisfaction problems, Journal of Computer and System Sciences, 92, 48-64 (preprint: http//arxiv.org/abs/1406.5336), 2018
Ivanyos G; Kutas P; Rónyai: Explicit equivalence of quadratic forms over Fq(t), Finite Fields and Their Applications 55, 33-63. (preprint: https://arxiv.org/abs/1610.08671), 2019
Kiss S; Hosszú É; Tapolcai J; Rónyai L; Rottenstreich O: Bloom filter with a false positive free zone, In: Shiven M; Tommaso M; Prasun S. ed. INFOCOM: Proc. of the 2018 IEEE Int. Conf. on Computer Communications, Honolulu (HI), USA, IEEE Comm. Soc. 1412-1420, 2018
Tapolcai J; Vass B; Heszberger Z; Biró J; Hay D; Kuipers F; Rónyai L: A tractable stochastic model of correlated link failures cused by disasters, In: Shive M; Tommaso M; Prasun S ed. INFOCOM: Proceedings of the 2018 IEEE Int. Conf. on Computer Communications, Honolulu (HI), USA, IEEE Comm. Soc. 2105-2113, 2018
Ivanyos G; Rónyai L: Chevalley-Warning theorem in quantum computing, ERCIM NEWS 117 28-29, 2018
Rónyai L: Gröbner bases and combinatorics:some examples, Veszprém Discrete Mathematics and Applications Conference 25 June- 29 June 2018 Veszprém, Hungary, 2018
Rónyai L: Recent results on norm graphs, Numbers, Functions, Equations 2018, Hajduszoboszló, Hungary, 2018
Kiss S; Sándor Cs: Generalizations of some results about the regularity properties of an additive representation function, Acta Mathematica Hungarica, to appear. (preprint: https://arxive.org/abs/1804.07560), 2019
Kiss S; Kutas P: An identification system based on the explicit isomorphism problem, submitted. Preprint: https://arxiv.org/abs/1812.09130, 2019
Breuer T; Héthelyi L; Horváth E; Küshammer B: The Loewy structure of certain fixpoint algebras, Manuscript., Representation Theory Days, 13-15 Sept. 2018 Leibniz University Hannover, 2018
Korchmáros G; Nagy G. P; Timpanella, M: Codes and gap sequences of Hermitian curves, Manuscript, 2019
Héthelyi L; Szőker M; Yakimova O: Fusion sytems of Lie algebras, Manuscript, 2019





 

Projekt eseményei

 
2018-03-21 13:00:08
Résztvevők változása
2017-02-13 15:10:42
Résztvevők változása




vissza »