Gravitációs hullámok és forrásaik az általánosított gravitációelméletek erős tér tartományaiban  részletek

súgó  nyomtatás 
vissza »

 

Projekt adatai

 
azonosító
123996
típus K
Vezető kutató Gergely Árpád László
magyar cím Gravitációs hullámok és forrásaik az általánosított gravitációelméletek erős tér tartományaiban
Angol cím Gravitational waves and their sources in the strong field regimes of generalised gravity theories
magyar kulcsszavak módosított gravitációelméletek, perturbációk stabilitása, gravitációs hullámok, sötét anyag
angol kulcsszavak modified gravity, stability of perturbations, gravitational waves, dark matter
megadott besorolás
Fizika (Műszaki és Természettudományok Kollégiuma)100 %
Ortelius tudományág: Relativitás
zsűri Fizika 1
Kutatóhely Elméleti Fizikai Tanszék (Szegedi Tudományegyetem)
résztvevők Gergely Cecília
Keresztes Zoltán
Kun Emma
Racskó Bence
Tápai Márton
projekt kezdete 2017-09-01
projekt vége 2023-11-30
aktuális összeg (MFt) 29.816
FTE (kutatóév egyenérték) 14.99
állapot lezárult projekt
magyar összefoglaló
A kutatás összefoglalója, célkitűzései szakemberek számára
Itt írja le a kutatás fő célkitűzéseit a témában jártas szakember számára.

A mindkét Advanced LIGO detektorban közvetlenül kimutatott gravitációs hullámok után a sötét anyag és sötét energia mibenléte maradt a gravitációelmélet legégetőbb kihívása. A felgyülemlő kísérleti bizonyítékok nyomán a sötét szektor kölcsönhatása a barionikus anyaggal kimutathatatlanul gyenge, így a sötét anyag gravitációs mezők közé sorolása és az általánosított gravitációelméletek tárgyalása jogossá válik. A húrelmélet által is megjósolt skalár-tenzor elméletek között tartjuk számon a Horndeski és Gleyzes-Langlois-Piazza-Vernizzi elméleteket, valamint ezek Kovariáns és Kovariantizált Galileon határeseteit. Ezen elméletek jóslatai között erős gravitációs térben lényeges különbség mutatkozhat a téregyenletek nemlineáris jellege miatt. A különbségek a perturbációk stabilitásában, a gravitációs hullámok polarizációinak számában és a hullámok háttérre történő visszahatásának jellegében egyaránt megjelenhetnek.
A különbségek feltárásához a geometriai optikai vagy nagyfrekvenciás közelítést; a háttéren szimmetria feltevéseket; a téridő új típusú 2+1+1 geometriai felbontásait és új (kidolgozandó) illesztési feltételeket alkalmazunk.

Kutatásaink adatelemzést is tartalmaznak: galaktikus fotometriai adatokat használunk sötét anyag modellek és általánosított gravitációelméletek jóslatainak galaktikus forgásgörbe adatokkal való egybevetésére; VLBI rádió adatokat AGN jetek periodicitásainak azonosítására, melyek szupernagy tömegű fekete lyuk kettősök jelenlétére utalhatnak a jet alapnál; végül a LIGO Tudományos Kollaboráció Kompakt Kettősök Összeolvadása csoportjával szoros együttműködésben az Advanced LIGO által gyűjtött adatokat a gravitációs hullámok közvetlen kimutatására.

Mi a kutatás alapkérdése?
Ebben a részben írja le röviden, hogy mi a kutatás segítségével megválaszolni kívánt probléma, mi a kutatás kiinduló hipotézise, milyen kérdéseket válaszolnak meg a kísérletek.

A tervezett kutatások és céljaik a következő kulcskérdések köré tömörülnek:
A) Különböző általánosított gravitációelméletek geometriai optikai határesetének vizsgálata az erős gravitáció tartományában, különös tekintettel a gravitációs hullámok keletkezésére és nemlineáris hatására.
B) Új 2+1+1 téridő- és gravitációs dinamika felbontások, nem-merőleges kettős fóliázás, illetve örvénylő kiválasztott térbeli vektormező esetén.
C) A fenti felbontások alkalmazása a gömbszimmetrikus téridők perturbációinak vizsgálatára általánosított gravitációelméletekben. A dinamika és stabilitás vizsgálata a perturbációk páros szektorában.
D) Gömbszimmetrikus és egzakt gravitációshullám-téridők (például hengerszimmetrikus Einstein-Rosen hullámok általánosításainak) analitikus és numerikus vizsgálata általánosított gravitációelméletekben.
E) Gravitációs hullám terjedésének vizsgálata általánosított gravitációelméletekben a fényszerű felületek menti illesztési feltételek kidolgozásával.
F) Speciális sötét anyag modellek és módosított gravitációelméletek tesztelése galaktikus léptéken forgásgörbe adatokkal.
G) Aktív Galaxismagok (AGN) jetjeiben található periódikus struktúrák vizsgálata a jetalapnál található szupernagy tömegű fekete lyuk kettős azonosításának reményében, mely a LISA által észlelendő alacsony frekvenciás hravitációs hullámok forrása.
H) Az Advanced LIGO által gyűjtött adatok feldolgozása közvetlen gravitációshullám-detektálás céljából a LIGO Tudományos Kollaboráció Kompakt Kettősök Összeolvadása csoportjával együttműködésben.

Mi a kutatás jelentősége?
Röviden írja le, milyen új perspektívát nyitnak az alapkutatásban az elért eredmények, milyen társadalmi hasznosíthatóságnak teremtik meg a tudományos alapját. Mutassa be, hogy a megpályázott kutatási területen lévő hazai és a nemzetközi versenytársaihoz képest melyek az egyediségei és erősségei a pályázatának!

A pályázat az általános relativitáselmélet és skalár-tenzor gravitációelméletek jóslatai közötti különbségek meghatározását tűzi ki célul, mind az egzakt megoldások, mind a téridő perturbációk szintjén. A geometriai optikai közelítés alkalmazása a gravitációs hullámok lehetséges különböző viselkedésére világít rá. A kidolgozandó új 2+1+1 felbontások mind gömbszimmetria, mind hengerszimmetria esetén általános mértékrögzítést tesznek lehetővé, miközben az egyetlen örvénykomponens bevezetése mellett a lehető legegyszerűbbek maradnak. A fényszerű hiperfelületek mentén levezetendő illesztési feltételek fénysebességgel terjedő lökéshullámok tárgyalását teszik lehetővé. Mindezek lényegesen bővítik a tudományterület általános ismeretanyagát.
A LISA források meghatározása az AGN jetek periódikus struktúráiból, valamint az IceCube nagyenergiás neutrinó detektálásaiból a „többeshírnök” (multimessenger) csillagászathoz lesz fontos adalék. Végül a LIGO Tudományos Kollaboráció számára végzendő adatkiértékelés gravitációs hullámok azonosításához vezethet.
A pályázat minden évében átlagban 4 kevés szerzős cikket tervezünk közölni elismert szakfolyóiratokban a tervezett kutatásokból. Teljesíteni fogjuk a LIGO Tudományos Kollaborációban (melynek szerzői között szerepel a témavezető és Tápai M. is) tett adatelemzéssel kapcsolatos válallásainkat.
Részt veszünk a tudományterület legfontosabb konferenciáin (beleértve a LIGO Tudományos Kollaboráció találkozóit), ahol eredményeinket ismertetni fogjuk. Részt veszünk kisebb műhelyeken is és nemzetközi látogatások keretében megtárgyaljuk kutatásainkat velünk kollaboráló kollégákkal.
Pályázatunk fő erőssége a matematikai, analitikus és geometriai készségek felhasználásának magyarországi csoportok között egyedülálló ötvözödése a galaktikus fotometriai, rádió AGN, valamint az Advanced LIGO adatok elemzésével. A mi csoportunk az egyetlen Magyarországon, amely a LIGO Tudományos Kollaboráció Kompakt Kettős Összeolvadás csoportjában dokumentáltan elkezdte az adatelemzési munkát. Magyarországi viszonylatban nemzetközi társzerzőink száma magas.

A kutatás összefoglalója, célkitűzései laikusok számára
Ebben a fejezetben írja le a kutatás fő célkitűzéseit alapműveltséggel rendelkező laikusok számára. Ez az összefoglaló a döntéshozók, a média, illetve az érdeklődők tájékoztatása szempontjából különösen fontos az NKFI Hivatal számára.

Az Univerzum nagyléptékű szerkezetét a leggyengébb alapkölcsönhatás, a gravitáció alakítja. Einstein általános relativitáselmélete (ÁRE) szerint a gravitáció fénysebességgel terjed. Az ÁRE megszületése után 100 évvel a LIGO Tudományos Kollaboráció és a Virgo Kollaboráció bejelentette a gravitációs hullámok (GHk) kétszeres közvetlen kimutatását mindkét LIGO obszervatóriumban. A látványos igazolás után a gravitáció elméletének legnagyobb kihívása az eddig felfedezetlen sötét anyag és sötét energia marad, melynek hiányában az Einstein elmélet nem egyezne a megfigyelésekkel. A felgyülemlő kísérleti bizonyítékok szerint azonban a sötét szektor kölcsönhatása a barionikus anyaggal kimutathatatlanul gyenge. Jogos ezért a sötét anyagot a gravitációs mezők közé venni. A sötét anyag / sötét energia paradigmát megoldandó vizsgálnak általánosított gravitációelméleteket. Ilyenek a skalár-tenzor típusú elméletek is, melyek a húrelméletből is előállnak. Bár a Naprendszerben Einstein gravitációelmélete minden próbát kiállt, az erős gravitáció tartományaiban nem lehetett megfigyelésekkel összevetni és megértését is nehezíti az Einstein egyenletek nemlineáris jellege. Ebben a tartományban a GHk is csak akkor értelmezhetők, ha a perturbációk hullámhossza kisebb a görbületi sugárnál (geometriai optika vagy nagyfrekvenciás közelítés).
A megvizsgálandó problémák az ÁRE és skalár-tenzor gravitációelméletek közötti különbségekre világítanak rá a gravitáció erős tér tartományaiban, ahol a GHk visszahatása a háttérre szignifikáns. Vizsgálunk különböző sötét anyag modelleket, a GHk forrásainak hatását az AGN jetekre és kiértékeljük az Advanced LIGO detektorok által felvett adatokat.
angol összefoglaló
Summary of the research and its aims for experts
Describe the major aims of the research for experts.

Following the direct detection of gravitational waves in both Advanced LIGO observatories, the nature of dark matter and dark energy stand as the biggest challenges concerning gravity. As cumulated evidence suggests that the interaction of the dark sector with baryonic matter is weak beyond detectable, the inclusion of dark matter in the gravitational sector and the introduction of generalised gravity theories become justified. Scalar-tensor type theories, which also emerge from string theory, include Horndeski and Gleyzes-Langlois-Piazza-Vernizzi theories, also their limits of Covariant Galileon and Covariantized Galileon.
Differences among these theories are most visible in the strong field regime, due to nonlinearities of the field equations. They may arise in the stability properties of perturbations, in the number of polarisations of the gravitational waves and in the non-linear back-reaction of these waves on the background.
In analysing these differences we will explore the geometrical optics or high-frequency approximation; symmetry assumptions for the background; novel 2+1+1 geometric decompositions of space-time and novel junction conditions (to be worked out).

Our research also encompasses data processing: galactic photometry data will be used in order to confront dark matter models and generalised gravity predictions with galactic rotation curves; VLBI radio data in order to identify periodic AGN jet structures indicating supermassive black hole binaries at its base; and data collected by Advanced LIGO in order to directly detect gravitational waves in collaboration with the Compact Binary Coalescence group of the LIGO Scientific Collaboration.

What is the major research question?
Describe here briefly the problem to be solved by the research, the starting hypothesis, and the questions addressed by the experiments.

The proposed research can be summarized through the following key issues and research objectives:
A) The study of the geometrical optics limit of various generalised gravity theories in strong field regime, with special emphasis on gravitational wave (GW) production and nonlinearities.
B) Working out new 2+1+1 decompositions of space-time and of gravitational dynamics, with either non-orthogonal double foliation, or with one of the singled-out directions having vorticity.
C) Application of the above decompositions for the perturbations of spherically symmetric space-times in generalised gravity theories. Study of the dynamics and stability under even mode perturbations.
D) Analytical and numerical study of the spherically symmetric space-times and of exact gravitational waves (for example under cylindrical symmetry) in generalised gravity theories.
E) Analysing gravitational wave propagation in generalised gravity theories by working out the corresponding junction conditions along null hypersurfaces.
F) Testing specific dark matter models vs. modified gravity predictions on galactic scale by available rotation curve data.
G) Analysis of periodic structures in Active Galactic Nuclei (AGN) jets in order to identify possible supermassive BH (SMBH) binaries at its base, which are sources of low-frequency GWs for the LISA space mission.
H) Analysis of the data collected by Advanced LIGO for direct GW detection, performed in the framework of the Compact Binary Coalescence group of the LIGO Scientific Collaboration.

What is the significance of the research?
Describe the new perspectives opened by the results achieved, including the scientific basics of potential societal applications. Please describe the unique strengths of your proposal in comparison to your domestic and international competitors in the given field.

The proposal will focus on identifying differences between the predictions of general relativity and scalar-tensor gravitational theories, both at the levels of exact solutions and of space-time perturbations. The application of the geometrical optics limit will shed light on the possibly different behaviour of gravitational waves. The newly developed 2+1+1 decompositions will allow for generic gauge fixing both under spherical and cylindrical symmetry, while staying simple in the sense of allowing only for one vorticity component in the formalism. The junction conditions along null hypersurfaces in generalised gravity theories will prove useful in the discussion of shock waves propagating with the speed of light. These will be important additions to the general knowledge in the field.
The identification of LISA sources from periodic structure in AGN jet data and from high-energy neutrino detections by IceCube will be an important addition to multi-messenger astronomy. Finally, data analysis for the LIGO Scientific Collaboration will lead to possible detection of gravitational waves.
We expect to publish in average 4 papers (with small author number) per each year of the proposed research in good quality journals. We will also fulfil the data analysis commitment of our group towards the LIGO Scientific Collaboration, in the papers of which the PI and M. Tápai are authors.
We will attend the most important conferences in the field (including the LIGO Scientific Collaboration meetings) and disseminate our results there. We will also attend smaller workshops and discuss our work during international visits with colleagues with whom we will collaborate.
The main strength of our proposal is the unique combination of expertise (referring to Hungary), with involved mathematical, analytical and geometrical skills coexisting with expertise in analyzing galactic photometric and AGN radio data, also Advanced LIGO data in the framework of the Compact Binary Coalescence group of the LIGO Scientific Collaboration (our group being the only one in Hungary, which already commenced this type of activity). We also enjoy a large (by Hungarian standards) circle of international collaborators.

Summary and aims of the research for the public
Describe here the major aims of the research for an audience with average background information. This summary is especially important for NRDI Office in order to inform decision-makers, media, and others.

Gravitation, the weakest fundamental interaction, governs the large-scale structure of the Universe. Einstein’s general relativity (GR) predicts that gravity propagates with the speed of light. One hundred years after the birth of GR, the LIGO Scientific Collaboration and Virgo Collaboration announced the twofold direct detection of gravitational waves (GWs) in both Advanced LIGO observatories. After this spectacular confirmation, the biggest challenge concerning gravity is the yet to be detected dark energy and dark matter, without which Einstein’s theory cannot fit the observations. Cumulated evidence suggests that the interaction of the dark sector with baryonic matter is weak, beyond detectable. This justifies the inclusion of dark matter in the gravitational sector. Generalised gravity theories have been proposed to address the dark matter / dark energy paradigm. They include scalar-tensor type theories, which also emerge from string theory. While at the Solar System scale Einstein’s gravity is well tested, strong gravity regimes are neither tested nor theoretically well understood due to nonlinearities of the Einstein equations. In this regime GWs can only be defined when the wavelength of the perturbations is much less than the curvature radius of the background (the geometrical optics or high-frequency approximation).
We propose to investigate a series of problems shedding light on the differences between GR and scalar-tensor gravity theories in the strong field regime, where the back-reaction of GWs is significant. We also test dark matter models, study the imprint of GW sources in AGN jets and analyse data taken by the Advanced LIGO detectors.





 

Zárójelentés

 
kutatási eredmények (magyarul)
A téridő új 2+1+1 típusú, nemmerőleges kettős fóliázáson alapuló felbontása lehetővé tette skalár-tenzor elméletek kéthorizontú fekete lyuk, csupasz szingularitás és homogén új megoldásainak megtalálását. Kidolgoztuk a minimálisan csatolt skalármező folyadék interpretációját. Feketelyuk-perturbációk esetén ez bejövő és kimenő null porok szuperpozíciója ideális folyadékkal. Fekete lyuk, neutron-, bozon-, gravacsillag komponensekből álló kompakt kettősök spin konfigurációinak lineáris stabilitását vizsgáltuk. Új, kvadrupólmomentum által generált spin flip-flop jelenséget; Kerr, Bardeen vagy Hayward fekete lyuk által okozott eltérő amplítudó-modulációt; Born—Infeld gravitációban reguláris központú fekete lyukat találtunk. A Komar-tömegsűrűség lehetővé tette a Levi-Civita téridő értelmezését. Disztribúcionális és variációelven alapuló illesztési feltételeket vezettünk le skalár-tenzor, majd általános térelméletekre, tetszőleges kauzális jellegű hiperfelületek mentén. A graviton tömegére szigorú felső határt határoztunk meg Bose—Einstein sötét anyag modell teszteléséből. Sokcsatornás mérések segítségével pontosítottuk a Roos-kvazár nyalábjának tövében található forgó fekete lyuk jellemzését és IceCube-forrásokat azonosítottunk. 26 kevés szerzős és nagyszámú kollaborációs cikket jegyeztünk, 27 nemzetközi előadást tartottunk és segítettük diákjaink kezdeti kutatási erőfeszítéseit.
kutatási eredmények (angolul)
A new 2+1+1 decomposition of space-time, based on a non-orthogonal double foliation allowed to find new spherically symmetric naked singularities, black holes with double horizons and homogeneous spacetimes in scalar-tensor gravity. We developed the fluid equivalence interpretation of minimally coupled scalar fields, which in black hole perturbations appear as superpositions of incoming and outgoing null dust streams with a perfect fluid. We worked out the linear stability analysis of spin configurations in compact binaries with black hole, neutron star, boson star or gravastar components. We identified new, quadrupole induced spin flip-flops; different amplitude modulations by Kerr, Bardeen or Hayward black holes; black holes with regular centre in Born—Infeld gravity. Komar mass density turned out suitable for better understanding Levi-Civita spacetime. We derived junction conditions both as distributions and from variational approach in scalar-tensor and generic field theories, across hypersurfaces with arbitrary causal character. We established a stringent upper limit on the graviton mass from testing Bose—Einstein dark matter models. Multimessenger observations allowed to improve our estimates of the spinning dominant black hole at the jet basis of the Roos quasar and to identify sources for IceCube detections. We published 26 short author list papers, several LIGO and other collaboration papers, gave 27 international talks and guided our students in their early research.
a zárójelentés teljes szövege https://www.otka-palyazat.hu/download.php?type=zarobeszamolo&projektid=123996
döntés eredménye
igen





 

Közleményjegyzék

 
B Racskó: Junction conditions in a general field theory, Classical and Quantum Gravity, 2023
E Kun, S Britzen, S Frey, KÉ Gabányi, LÁ Gergely: Signatures of a spinning supermassive black hole binary on the mas-scale jet of the quasar S5 1928+738 based on 25 years of VLBI data, Mon. Not. Royal Astron. Soc. 526, 4698, 2023
102 authors of the COST Action CA18108, including LÁ Gergely: White Paper and Roadmap for Quantum Gravity Phenomenology in the Multi-Messenger Era, Submitted to Class. Quantum Grav. for the Focus Issue on "Quantum Gravity Phenomenology in the Multi-Messenger Era: Challenges and Perspectives", 2023
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data, Astrophys. J. Lett. 941, L30, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data, Phys. Rev. D 106, 102008, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data, Phys. Rev. D. 106(6), 062002, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run, Phys. Rev. Lett. 129, 061104, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data, Phys. Rev. D. 106(4), 042003, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs, Astrophys. J. 935, 1, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data, Phys. Rev. D. 105(10), 102001, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Search for continuous gravitational waves from 20 accreting millisecond X-ray pulsars in O3 LIGO data, Phys. Rev. D. 105(2), 022002, 2022
A Fóris: High frequency gravitational waves and their backreaction in strong field, National Scientific Student Conference, 2022
Á Kovács: Spherically symmetric spacetimes in the presence of high frequency gravitational waves, National Scientific Student Conference, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3b, Astrophys. J. 928(2), 186, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO, The Astrophysical Journal Supplement Series, Volume 267, Issue 2, id.29, 2023
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Constraints on the Cosmic Expansion History from GWTC-3, Astrophys. J. 949, 76 (2023), 2023
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3, Phys. Rev. X 13, 011048 (2023), 2023
LÁ Gergely: Stability analysis of spin evolution in compact binaries with black hole, neutron star, gravastar, or boson star components, Star – UBB Seminar Series in Gravitation, Cosmology and Astrophysics, 2023
LÁ Gergely: Stability analysis of spin evolution in compact binaries with black hole, neutron star, gravastar, or boson star components, Special Colloquium for Peter Biermann's 80th Birthday, Bochum, Germany, 2023
A Fóris: Exact spacetimes generated by high frequency gravitational waves, MSc Thesis, University of Szeged, 2023
B Cirok: The effects of magnetic dipol moments on the secular spin dynamics of compact binaries, BSc Thesis, University of Szeged, 2023
Á Csókási: The Hamiltonian dynamics of gravity, BSc Thesis, University of Szeged, 2023
A Sajgó: Gravitational information paradox, BSc Thesis, University of Szeged, 2023
D Szili: Interstellar and science, BSc Thesis, University of Szeged, 2023
T Tordai: The H0 and S8 tensions in cosmology, BSc Thesis, University of Szeged, 2023
B Racskó, LÁ Gergely: Geometrical and physical interpretation of the Levi-Civita spacetime in terms of the Komar mass density, Eur. Phys. J. Plus 138, 439 (2023), 2023
B Racskó: Junction conditions in a general field theory, Classical and Quantum Gravity, 2023
E Kun, S Britzen, S Frey, KÉ Gabányi, LÁ Gergely: Signatures of a spinning supermassive black hole binary on the mas-scale jet of the quasar S5 1928+738 based on 25 years of VLBI data, Monthly Notices of the Royal Astronomical Society, 2023
Z Keresztes, M Tápai, L Á Gergely: Spin flip-flops from secular dynamics of compact binaries, Ed. ES Battistelli, RT Jantzen, R Ruffini, World Scientific, Singapore, p. 984 – 989 (2022), 2022
C Gergely, Z Keresztes, L Á Gergely: Doubly-foliable space-times and gauge-fixing of scalar-tensor perturbations, Ed. ES Battistelli, RT Jantzen, R Ruffini, World Scientific, Singapore, p. 386 – 391 (2022), 2022
L Á Gergely, B Racskó: Shock-waves in the gravitational wave compatible Horndeski theories with linear kinetic term, Ed. E S Battistelli, R T Jantzen, R Ruffini, World Scientific, Singapore, p. 392 – 397 (2022), 2022
E Kun, P L Biermann, L Á Gergely: Radio and high-energy neutrino emission of the blazar PKS 0723-008, Ed. ES Battistelli, RT Jantzen, R Ruffini, World Scientific, Singapore, p. 1723 – 1728 (2022), 2022
C Nagy, Z Keresztes, L Á Gergely: Spherically symmetric, static black holes with scalar hair, and naked singularities in nonminimally coupled k-essence, poster presented at CERS12: „12th Central European Relativity Seminar”, Budapest (2022. 02. 22.), 2022
C Nagy, Z Keresztes, L Á Gergely: Spherically symmetric, static spacetimes 
and their perturbations 
in the effective field theory of gravity, Conference talk at QG-MM: „Third Annual Conference – Napoli”, Napoli, Italy, 2022
153 authors of the COST Action CA18108, including LÁ Gergely: Quantum gravity phenomenology at the dawn of the multi-messenger era — A review, Progress in Nuclear and Particle Physics, 103948 (2022), 2022
141 authors of the LISA Collaboration, including LÁ Gergely: New Horizons for Fundamental Physics with LISA, Living Reviews in Relativity 25(1), 1 – 148, 2022
B Racskó, LÁ Gergely: Geometrical and physical interpretation of the Levi-Civita spacetime in terms of the Komar mass density, to be submitted, 2022
B Mikóczi, Z Keresztes: Spin Dynamics of Moving Bodies in Rotating Black Hole Spacetimes, Ann. Phys. (Berlin) 2022, 2100444, 2022
B Racskó, L Á Gergely: Variational formalism for thin shells in General Relativity, poster presented at CERS12: „12th Central European Relativity Seminar”, Budapest (2022. 02. 22.), 2022, 2022
L Á Gergely: Gravitational Lensing, Section 26 of Modified Gravity and Cosmology: An update by the CANTATA NETWORK; Editors: EN Saridakis et al., Springer ISBN: 978-3-030-83715-0 (2021), 2021
L Á Gergely, Z Keresztes, B Fekecs: Gravitational radiation: sources and detection, poster presented at Einstein Telescope meeting in Budapest, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants, Phys. Rev. D. 105(8), 082005, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: First joint observation by the underground gravitational-wave detector KAGRA with GEO 600, Prog. Theor. Exp. Phys. 2022 (6), 063F01, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run, Astrophys. J. 932(2), 133, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo, Astron. Astrophys. 659, A84, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3b, Astrophys. J. 928(2), 186, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo, Astron. Astrophys. 659, A84, 2022
Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3b: The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations, Astrophys. J. 928(2), 186, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra C: All-sky, all-frequency directional search for persistent gravitational-waves from Advanced LIGO's and Advanced Virgo's first three observing runs, Phys. Rev. D. 105(12), 122001, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run, Phys. Rev. D. 105(6), 063030, 2022
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background, Phys. Rev. Lett. 120, 201102, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Full band all-sky search for periodic gravitational waves in the O1 LIGO data, Phys. Rev. D 97, 102003, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Constraints on cosmic strings using data from the first Advanced LIGO observing run, Phys. Rev. D 97, 102002, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA, Living Rev Relativ (2018) 21: 3, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences, Phys. Rev. Lett. 120, 091101, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run, Class. Quantum Grav. 35 065010, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run, Class. Quantum Grav. 35 065009, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817, The Astrophysical Journal Letters, 851:L16, 2017
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): On the Progenitor of Binary Neutron Star Merger GW170817, The Astrophysical Journal Letters, 850:L40, 2017
The LIGO Scientific Collaboration and The Virgo Collaboration (including L Á Gergely and M Tápai), The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration: A gravitational-wave standard siren measurement of the Hubble constant, Nature 551, 85–88, 2017
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817, The Astrophysical Journal Letters, 850:L39, 2017
ANTARES Collaboration, IceCube Collaboration, The Pierre Auger Collaboration, and LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely and M Tápai): Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory, The Astrophysical Journal Letters, 850:L35, 2017
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101, 2017
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett. 119, 141101, 2017
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely and M Tápai), Fermi Gamma-ray Burst Monitor, and INTEGRAL: Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, The Astrophysical Journal Letters, 848:L13, 2017
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely and M Tápai), Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-HXMT Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3, and CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech- NRAO, TTU-NRAO, and NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT: Multi-messenger Observations of a Binary Neutron Star Merger, The Astrophysical Journal Letters, 848:L12, 2017
Z Keresztes, M Tápai, L Á Gergely: Spin flip-flops from secular dynamics of compact binaries, Ed. ES Battistelli, RT Jantzen, R Ruffini, World Scientific, Singapore, p. 984 – 989, 2022
E Kun, P L Biermann, L Á Gergely: Searching for high-energy neutrino emitter active galactic nuclei, Ed. ES Battistelli, RT Jantzen, R Ruffini, World Scientific, Singapore, p. 1723 – 1728 (2022), 2022
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence, The Astrophysical Journal Letters 851, L35, 2017
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): GW170817: Measurements of Neutron Star Radii and Equation of State, Physical Review Letters 121, 161101, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.031040, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo, The Astrophysical Journal Letters 882, L24, 2019
 P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run, Physical Review Letters, 121, 231103, 2018
ANTARES, IceCube, LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely and M Tápai): Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube, The Astrophysical Journal 870, 134, 2019
Fermi Gamma-ray Burst Monitor Team, LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely and M Tápai): A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run, The Astrophysical Journal 871, 90, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Properties of the Binary Neutron Star Merger GW170817, Physical Review X 9, 011001, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Constraining the p -Mode-g -Mode Tidal Instability with GW170817, Physical Review Letters 122, 061104, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run, Physical Review D 100, 061101(R), 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run, Physical Review D 99, 104033, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run, The Astrophysical Journal 874, 163, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO, The Astrophysical Journal 875, 122, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817, The Astrophysical Journal 875, 160, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run, The Astrophysical Journal 875, 161, 2019
DES Collaboration, LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely and M Tápai): First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary─Black-hole Merger GW170814, The Astrophysical Journal Letters 876, L7, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs, Physical Review D 100, 062001, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Tests of General Relativity with GW170817, Physical Review Letters 123, 011102, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run, Physical Review D 100, 024017, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data, Physical Review D 100, 024004, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015─2017 LIGO Data, The Astrophysical Journal 879, 10, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run, Physical Review D 99, 122002, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run, Physical Review D 99, 104033, 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely):: Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network, Phys. Rev. D 100, 064064 (2019), 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model, Phys. Rev. D 100, 122002 (2019), 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015-2017 LIGO Data, The Astrophysical Journal 879 (2019) 10, 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs, The Astrophysical Journal, Volume 883, Issue 2, article id. 149, 10 pp. (2019), 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo, The Astrophysical Journal, Volume 886, Issue 1, article id. 75, 15 pp. (2019), 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1, Physical Review D, Volume 100, Issue 10, id.104036, 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Model comparison from LIGO─Virgo data on GW170817's binary components and consequences for the merger remnant, Classical and Quantum Gravity, Volume 37, Issue 4, id.045006, 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M☉, The Astrophysical Journal Letters, Volume 892, Issue 1, id.L3, 24 pp. (2020), 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals, Classical and Quantum Gravity, Volume 37, Issue 5, id.055002, 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs, The Astrophysical Journal, Volume 893, Issue 2, id.100, 14 pp. (2020), 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses, Phys. Rev. D 102, 043015 (2020), 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo, Phys. Rev. D 101 084002, 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object, The Astrophysical Journal Letters, Volume 896, Issue 2, id.L44, 20 pp. (2020), 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): GW190412: Observation of a binary-black-hole coalescence with asymmetric masses, Physical Review D, Volume 102, Issue 4, article id.043015, 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Properties and Astrophysical Implications of the 150 M☉ Binary Black Hole Merger GW190521, The Astrophysical Journal Letters, Volume 900, Issue 1, id.L13, 27 pp., 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): GW190521: A Binary Black Hole Merger with a Total Mass of 150 M☉, Physical Review Letters, Volume 125, Issue 10, article id.101102, 2020
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars, Astrophys. J. Lett. 902(1), L21, 2020
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run, Phys. Rev. X 11(2), 021053, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog, Phys. Rev. D 103(12), 122002, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog, Astrophys. J. Lett. 913(1), L7, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3a, Astrophys. J. 915(2), 86, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: VizieR Online Data Catalog: 2015-2017 LIGO obs. analysis for 221 pulsars, VizieR Online Data Catalog J/ApJ/879/10 (2020), 2020
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: VizieR Online Data Catalog: Search for GW signals associated with GRBs (Abbott+, 2019), VizieR Online Data Catalog J/ApJ/886/75 (2021), 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910, Astrophys. J. Lett. 913(2), L27, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo, SoftwareX 13, 100658, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run, Phys. Rev. D 104(2), 022004, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run, Phys. Rev. Lett. 126(24), 241102, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: A gravitational-wave measurement of the Hubble constant following the second observing run of Advanced LIGO and Virgo, Astrophys. J. 909(2), 218, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems, Phys. Rev. D. 103(6), 064017, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs, Phys. Rev. D. 104(2), 022005, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences, Astrophys. J. Lett. 915, L5, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run, Phys. Rev. D. 104(2), 022004 (2021), 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data, Phys. Rev. D. 104(8), 082004, 2021
B. Racskó: Variational formalism for generic shells in general relativity, Class. Quantum Grav. 39, 015004, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants, Phys. Rev. D. 105(8), 082005, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: First joint observation by the underground gravitational-wave detector KAGRA with GEO 600, Prog. Theor. Exp. Phys. 2022 (6), 063F01, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run, Astrophys. J. 932(2), 133, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3b, Astrophys. J. 928(2), 186, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo, Astron. Astrophys. 659, A84, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra C: All-sky, all-frequency directional search for persistent gravitational-waves from Advanced LIGO's and Advanced Virgo's first three observing runs, Phys. Rev. D. 105(12), 122001, 2022
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run, Phys. Rev. D. 105(6), 063030, 2022
E Barausse et al. (320 authors, including LÁ Gergely and Z Keresztes): Prospects for fundamental physics with LISA, Gen. Rel. Grav. 52, 81, 2020
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences, Astrophys. J. Lett. 915, L5, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run, Phys. Rev. D. 104(2), 022004 (2021), 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data, Phys. Rev. D. 104(8), 082004, 2021
Keresztes Z., Gergely L.Á.: Stability analysis of the spin evolution fixed points in inspiraling compact binaries with black hole, neutron star, gravastar, or boson star components, PHYSICAL REVIEW D 103: (8) 084025, 2021
Keresztes Z., Tápai M., Gergely L.Á.: Spin and quadrupolar effects in the secular evolution of precessing compact binaries with black hole, neutron star, gravastar, or boson star components, PHYSICAL REVIEW D 103: (8) 084024, 2021
C. Nagy: Can high frequency gravitational waves modify the Vainshtein mechanism?, Theory and Experiment, Gravitex 2021, Durban, South Africa, 9-12 August 2021, Abstracts p. 33., 2021
Z. Keresztes, L. Á. Gergely: Secular dynamics of compact binaries and stability analysis of the evolution fix points, 13th International LISA Symposium (Online conference), 2020
C. Nagy, Z. Keresztes, L. Á. Gergely: Spherically symmetric, static black holes with scalar hair, and naked singularities in nonminimally coupled k-essence, Phys. Rev. D 103, 124056, 2021
C. Nagy: Spherically symmetric, static black holes in nonminimally coupled k-essence theory, International Conference on Gravitation: Theory and Experiment, Gravitex 2021, 2021
B. Racskó: Variational formalism for generic shells in general relativity, submitted for publication to Class. Quantum Grav., 2021
E. Kun, I. Bartos, J. Becker-Tjus, P. Biermann, F. Halzen, G. Mező: Cosmic Neutrinos from Temporarily Gamma-suppressed Blazars, Astrophys. J. Lett 911, L18 (2021), 2021
E. N. Saridakis et al (additional 52 authors including L. Á. Gergely): Modified Gravity and Cosmology: An Update by the CANTATA Network, review book to appear at Springer, an abstract book can be found at arXiv:2105.12582, 2021
G. Berta: Space-time of a slowly rotating, axially symmetric star, MSC Thesis, University of Szeged, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars, Astrophys. J. Lett. 902(1), L21, 2020
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run, Phys. Rev. X 11(2), 021053, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog, Phys. Rev. D 103(12), 122002, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog, Astrophys. J. Lett. 913(1), L7, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3a, Astrophys. J. 915(2), 86, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: VizieR Online Data Catalog: 2015-2017 LIGO obs. analysis for 221 pulsars, VizieR Online Data Catalog J/ApJ/879/10 (2020), 2020
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: VizieR Online Data Catalog: Search for GW signals associated with GRBs (Abbott+, 2019), VizieR Online Data Catalog J/ApJ/886/75 (2021), 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910, Astrophys. J. Lett. 913(2), L27, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo, SoftwareX 13, 100658, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run, Phys. Rev. D 104(2), 022004, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo & Kagra Collaborations: Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run, Phys. Rev. Lett. 126(24), 241102, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: A gravitational-wave measurement of the Hubble constant following the second observing run of Advanced LIGO and Virgo, Astrophys. J. 909(2), 218, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems, Phys. Rev. D. 103(6), 064017, 2021
The LIGO Scientific Collaboration, including LÁ Gergely + Virgo Collaboration: Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs, Phys. Rev. D. 104(2), 022005, 2021
Cecília Gergely, Zoltán Keresztes, László Árpád Gergely: Hamiltonian Dynamics of Doubly-Foliable Space-Times, Universe 2018, 4(1), 9; https://doi.org/10.3390/universe4010009, 2018
Bence Racskó, László Árpád Gergely: Light-Like Shockwaves in Scalar-Tensor Theories, Universe 2018, 4(3), 44; https://doi.org/10.3390/universe4030044, 2018
Emma Kun, Peter L. Biermann, Silke Britzen, László Á. Gergely: On the High-Energy Neutrino Emission from Active Galactic Nuclei, Universe 2018, 4(2), 24; https://doi.org/10.3390/universe4020024, 2018
László Á. Gergely, Zoltán Keresztes, Márton Tápai: Precessing Black Hole Binaries and Their Gravitational Radiation, Universe 2018, 4(2), 40; https://doi.org/10.3390/universe4020040, 2018
Márton Tápai, Viktória Pintér, Tamás Tarjányi, Zoltán Keresztes, László Árpád Gergely: Investigating the Poor Match among Different Precessing Gravitational Waveforms, Universe 2018, 4(3), 56; https://doi.org/10.3390/universe4030056, 2018
E Kun M Karouzos K É Gabányi S Britzen O M Kurtanidze L Á Gergely: Flaring radio lanterns along the ridge line: long-term oscillatory motion in the jet of S5 1803+784, Monthly Notices of the Royal Astronomical Society, Volume 478, Issue 1, 21 July 2018, Pages 359–370, https://doi.org/10.1093/mnras/sty98, 2018
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L. Á. Gergely and M. Tápai): Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background, Phys. Rev. Lett. 120, 201102, 2018
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L. Á. Gergely and M. Tápai): Full band all-sky search for periodic gravitational waves in the O1 LIGO data, Phys. Rev. D 97, 102003, 2018
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L. Á. Gergely and M. Tápai): Constraints on cosmic strings using data from the first Advanced LIGO observing run, Phys. Rev. D 97, 102002, 2018
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L. Á. Gergely and M. Tápai): Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA, Living Rev Relativ (2018) 21: 3, 2018
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L. Á. Gergely and M. Tápai): GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences, Phys. Rev. Lett. 120, 091101, 2018
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L. Á. Gergely and M. Tápai): Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run, Class. Quantum Grav. 35 065010, 2018
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L. Á. Gergely and M. Tápai): All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run, Class. Quantum Grav. 35 065009, 2018
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L. Á. Gergely and M. Tápai): Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817, The Astrophysical Journal Letters, 851:L16, 2017
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L. Á. Gergely and M. Tápai): On the Progenitor of Binary Neutron Star Merger GW170817, The Astrophysical Journal Letters, 850:L40, 2017
The LIGO Scientific Collaboration and The Virgo Collaboration (including L. Á. Gergely and M. Tápai), The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration: A gravitational-wave standard siren measurement of the Hubble constant, Nature 551, 85–88, 2017
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L. Á. Gergely and M. Tápai): Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817, The Astrophysical Journal Letters, 850:L39, 2017
ANTARES Collaboration, IceCube Collaboration, The Pierre Auger Collaboration, and LIGO Scientific Collaboration and Virgo Collaboration (including L. Á. Gergely and M. Tápai): Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory, The Astrophysical Journal Letters, 850:L35, 2017
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L. Á. Gergely and M. Tápai): GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101, 2017
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L. Á. Gergely and M. Tápai): GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett. 119, 141101, 2017
LIGO Scientific Collaboration and Virgo Collaboration (including L. Á. Gergely and M. Tápai), Fermi Gamma-ray Burst Monitor, and INTEGRAL: Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, The Astrophysical Journal Letters, 848:L13, 2017
LIGO Scientific Collaboration and Virgo Collaboration (including L. Á. Gergely and M. Tápai), Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-HXMT Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3, and CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech- NRAO, TTU-NRAO, and NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT: Multi-messenger Observations of a Binary Neutron Star Merger, The Astrophysical Journal Letters, 848:L12, 2017
Z Keresztes, M Tápai, L Á Gergely: Secular dynamics of precessing compact binaries, Gravity Malta 2018 - COST Meeting CA16104 Gravitational waves, black holes and fundamental physics (GWverse), 2018
Z Keresztes, M Tápai, L Á Gergely: Spin flip-flops from secular dynamics of compact binaries, Fifteenth Marcel Grossmann Meeting - MG15, University of Rome "La Sapienza", 2018
C Gergely, Z Keresztes, L Á Gergely: Doubly-foliable space-times and gauge-fixing of scalar-tensor perturbations, Fifteenth Marcel Grossmann Meeting - MG15, University of Rome "La Sapienza", 2018
L Á Gergely, B Racskó: Shock-waves in the gravitational wave compatible Horndeski theories with linear kinetic term, Fifteenth Marcel Grossmann Meeting - MG15, University of Rome "La Sapienza", 2018
E Kun, M Karouzos, K É Gabányi, S Britzen, L Á Gergely: The evolution of the jet of S5 1803+784 identified from very long baseline radio interferometry, Fifteenth Marcel Grossmann Meeting - MG15, University of Rome "La Sapienza", 2018
E Kun, P L Biermann, L Á Gergely: Radio and high-energy neutrino emission of the blazar PKS 0723-008, Fifteenth Marcel Grossmann Meeting - MG15, University of Rome "La Sapienza", 2018
C Gergely, Z Keresztes, L Á Gergely: Gravitational waves and scalar perturbations in spherically symmetric scalar-tensor gravity, Solvay Workshop “SuGAR 2018: Searching for the sources of galactic and extra galactic cosmic rays", Brussels, Belgium, 2018
E. Kun, Z. Keresztes, A. Simkó, G. Szűcs, L. Á. Gergely: Comparative testing of dark matter models with 15 HSB and 15 LSB galaxies, Astron. Astrophys. 608, A42, 2017
C Gergely, Z Keresztes, L Á Gergely: Hamiltonian Dynamics of Doubly-Foliable Space-Times, Universe 2018, 4(1), 9; https://doi.org/10.3390/universe4010009, 2018
B Racskó, L Á Gergely: Light-Like Shockwaves in Scalar-Tensor Theories, Universe 2018, 4(3), 44; https://doi.org/10.3390/universe4030044, 2018
E Kun, P L. Biermann, S Britzen, L Á Gergely: On the High-Energy Neutrino Emission from Active Galactic Nuclei, Universe 2018, 4(2), 24; https://doi.org/10.3390/universe4020024, 2018
L Á Gergely, Z Keresztes, M Tápai: Precessing Black Hole Binaries and Their Gravitational Radiation, Universe 2018, 4(2), 40; https://doi.org/10.3390/universe4020040, 2018
M Tápai, V Pintér, T Tarjányi, Z Keresztes, L Á Gergely: Investigating the Poor Match among Different Precessing Gravitational Waveforms, Universe 2018, 4(3), 56; https://doi.org/10.3390/universe4030056, 2018
E Kun, M Karouzos, K É Gabányi, S Britzen, O M Kurtanidze, L Á Gergely: Flaring radio lanterns along the ridge line: long-term oscillatory motion in the jet of S5 1803+784, Monthly Notices of the Royal Astronomical Society, Volume 478, Issue 1, 21 July 2018, Pages 359–370, https://doi.org/10.1093/mnras/sty98, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background, Phys. Rev. Lett. 120, 201102, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Full band all-sky search for periodic gravitational waves in the O1 LIGO data, Phys. Rev. D 97, 102003, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Constraints on cosmic strings using data from the first Advanced LIGO observing run, Phys. Rev. D 97, 102002, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA, Living Rev Relativ (2018) 21: 3, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences, Phys. Rev. Lett. 120, 091101, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run, Class. Quantum Grav. 35 065010, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run, Class. Quantum Grav. 35 065009, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817, The Astrophysical Journal Letters, 851:L16, 2017
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): On the Progenitor of Binary Neutron Star Merger GW170817, The Astrophysical Journal Letters, 850:L40, 2017
The LIGO Scientific Collaboration and The Virgo Collaboration (including L Á Gergely and M Tápai), The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration: A gravitational-wave standard siren measurement of the Hubble constant, Nature 551, 85–88, 2017
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817, The Astrophysical Journal Letters, 850:L39, 2017
ANTARES Collaboration, IceCube Collaboration, The Pierre Auger Collaboration, and LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely and M Tápai): Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory, The Astrophysical Journal Letters, 850:L35, 2017
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101, 2017
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett. 119, 141101, 2017
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely and M Tápai), Fermi Gamma-ray Burst Monitor, and INTEGRAL: Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, The Astrophysical Journal Letters, 848:L13, 2017
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely and M Tápai), Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-HXMT Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3, and CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech- NRAO, TTU-NRAO, and NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT: Multi-messenger Observations of a Binary Neutron Star Merger, The Astrophysical Journal Letters, 848:L12, 2017
Z Keresztes, M Tápai, L Á Gergely: Secular dynamics of precessing compact binaries, Gravity Malta 2018 - COST Meeting CA16104 Gravitational waves, black holes and fundamental physics (GWverse), 2018
Z Keresztes, M Tápai, L Á Gergely: Spin flip-flops from secular dynamics of compact binaries, Fifteenth Marcel Grossmann Meeting - MG15, University of Rome "La Sapienza", 2018
C Gergely, Z Keresztes, L Á Gergely: Doubly-foliable space-times and gauge-fixing of scalar-tensor perturbations, Fifteenth Marcel Grossmann Meeting - MG15, University of Rome "La Sapienza", 2018
L Á Gergely, B Racskó: Shock-waves in the gravitational wave compatible Horndeski theories with linear kinetic term, Fifteenth Marcel Grossmann Meeting - MG15, University of Rome "La Sapienza", 2018
E Kun, M Karouzos, K É Gabányi, S Britzen, L Á Gergely: The evolution of the jet of S5 1803+784 identified from very long baseline radio interferometry, Fifteenth Marcel Grossmann Meeting - MG15, University of Rome "La Sapienza", 2018
E Kun, P L Biermann, L Á Gergely: Radio and high-energy neutrino emission of the blazar PKS 0723-008, Fifteenth Marcel Grossmann Meeting - MG15, University of Rome "La Sapienza", 2018
C Gergely, Z Keresztes, L Á Gergely: Gravitational waves and scalar perturbations in spherically symmetric scalar-tensor gravity, Solvay Workshop “SuGAR 2018: Searching for the sources of galactic and extra galactic cosmic rays", Brussels, Belgium, 2018
E Kun, Z Keresztes, A Simkó, G Szűcs, L Á Gergely: Comparative testing of dark matter models with 15 HSB and 15 LSB galaxies, Astron. Astrophys. 608, A42, 2017
B Racskó, L Á Gergely: The Lanczos Equation on Light-Like Hypersurfaces in a Cosmologically Viable Class of Kinetic Gravity Braiding Theories, Symmetry, 11(5), 616, 2019
B Racskó, L Á Gergely: Null shells in kinetic gravity braiding scalar-tensor theories, Hungarian Physics Meeting, Eötvös Loránd Physics Society, 2019
Z Keresztes: Static and spherically symmetric black hole solution in a Born-Infeld inspired modified gravity., Athens 2019: Gravitational Waves, Black Holes and Fundamental Physics conference, Athens, Greece, 2019
E Kun: High-energy particle emission of active galactic nuclei, ELFT Summer School, Astroparticle Physics, Mátraháza, Hungary, 2018
L Á Gergely: Alternative gravitational theories confronted with observations, ELFT Summer School, Astroparticle Physics, Mátraháza, Hungary, 2018
B Racskó: Thin shells and shockwaves in generalized Brans-Dicke theories, FUture Gravitational Alternatives Meeting, Valencia, Spain, 2018
C Gergely: Gauge-fixing of black hole perturbations in the beyond Horndeski theories, FUture Gravitational Alternatives Meeting, Valencia, Spain, 2018
L Á Gergely: The legacy of Stephen Hawking, MAFIHE Tea House lecture, University of Szeged, Hungary, 2018
L Á Gergely: Black hole perturbations in effective field theories of modified gravity, Athens 2019: Gravitational Waves, Black Holes and Fundamental Physics conference, Athens, Greece, 2019
L Á Gergely: The discovery of gravitational waves and the 2017 Nobel Prize in Physics, Statutory meeting of the Szeged Branch of the Hungarian Academy of Sciences, Szeged, Hungary, 2019
C Gergely: Black hole perturbations in scalar-tensor gravitational theories, XXXIV OTDK in Physics, Geosciences and Mathematics, Eszterházy Károly University, Eger, Hungary, 2019
Z Keresztes: The evolutions of spinning bodies moving in rotating black hole spacetimes, Second Hermann Minkowski Meeting on the Foundations of Spacetime Physics, Albena, Bulgaria, 2019
L Á Gergely: Testing and stability analysis of modified gravity theories, Modern Theories of Gravitation, Hungarian Academy of Sciences, Budapest, Hungary, 2019
C Gergely, Z Keresztes, L Á Gergely: Gravitational dynamics in a 2+1+1 decomposed spacetime along nonorthogonal double foliations: Hamiltonian evolution and gauge fixing, Recent developments in Astronomy, Astrophysics, Space and Planetary Sciences, Cluj, Romania, 2019
Z Keresztes: The motion and spin evolution of extended bodies in rotating black hole spacetimes, Recent developments in Astronomy, Astrophysics, Space and Planetary Sciences, Cluj, Romania, 2019
B Racskó, L Á Gergely: Null shells in kinetic gravity braiding scalar-tensor theories, Recent developments in Astronomy, Astrophysics, Space and Planetary Sciences, Cluj, Romania, 2019
L Á Gergely, B Racskó, C Gergely: Modified gravity theories and their testing, Hungarian Physics Meeting, Eötvös Loránd Physics Society, Sopron, Hungary, 2019
L Á Gergely, B Racskó: Shock-waves in the gravitational wave compatible Horndeski theories with linear kinetic term, Proceedings of the Fifteenth Marcel Grossman Meeting on General Relativity, 2020
C Gergely, Z Keresztes, L Á Gergely: Doubly-foliable space-times and gauge-fixing of perturbations in scalar-tensor gravity theories, Proceedings of the Fifteenth Marcel Grossman Meeting on General Relativity, 2020
C Gergely, Z Keresztes, L Á Gergely: Gravitational dynamics in a 2 + 1 + 1 decomposed spacetime along nonorthogonal double foliations: Hamiltonian evolution and gauge fixing, Phys. Rev. D 99, 104071, 2019
E Kun, M Karouzos, K É Gabányi, S Britzen, L Á Gergely: The evolution of the jet of S5 1803+784 identified from very long baseline radio interferometry, Proceedings of the Fifteenth Marcel Grossman Meeting on General Relativity, 2020
E Kun, P L Biermann, L Á Gergely: Radio and high-energy neutrino emission of the blazar PKS 0723-008, Proceedings of the Fifteenth Marcel Grossman Meeting on General Relativity, 2020
Z Keresztes, M Tápai, L Á Gergely: Spin flip-flops from secular dynamics of compact binaries, Proceedings of the Fifteenth Marcel Grossman Meeting on General Relativity, 2020
E Kun, P Biermann, L Á Gergely: Very long baseline interferometry radio structure and radio brightening of the high-energy neutrino emitting blazar TXS 0506+056, Monthly Notices of the Royal Astronomical Society: Letters, Volume 483, Issue 1, p.L42-L46, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence, The Astrophysical Journal Letters 851, L35, 2017
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): GW170817: Measurements of Neutron Star Radii and Equation of State, Physical Review Letters 121, 161101, 2018
P L Biermann, J Becker Tjus, W de Boer, L I Caramete, A Chieffi, R Diehl, I Gebauer, L Á Gergely, E Haug, P P Kronberg, E Kun, A Meli, B B Nath, T Stanev: Supernova explosions of massive stars and cosmic rays, Advances in Space Research 62, 2773-2816, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.031040, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo, The Astrophysical Journal Letters 882, L24, 2019
 P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run, Physical Review Letters, 121, 231103, 2018
ANTARES, IceCube, LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely and M Tápai): Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube, The Astrophysical Journal 870, 134, 2019
Fermi Gamma-ray Burst Monitor Team, LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely and M Tápai): A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run, The Astrophysical Journal 871, 90, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Properties of the Binary Neutron Star Merger GW170817, Physical Review X 9, 011001, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Constraining the p -Mode-g -Mode Tidal Instability with GW170817, Physical Review Letters 122, 061104, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run, Physical Review D 100, 061101(R), 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run, Physical Review D 99, 104033, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run, The Astrophysical Journal 874, 163, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO, The Astrophysical Journal 875, 122, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817, The Astrophysical Journal 875, 160, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run, The Astrophysical Journal 875, 161, 2019
DES Collaboration, LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely and M Tápai): First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary─Black-hole Merger GW170814, The Astrophysical Journal Letters 876, L7, 2019
E Kun, Z Keresztes, S Das, L Á Gergely: Dark Matter as a Non-Relativistic Bose-Einstein Condensate with Massive Gravitons, Symmetry 2018, 10(10), 520, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs, Physical Review D 100, 062001, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Tests of General Relativity with GW170817, Physical Review Letters 123, 011102, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run, Physical Review D 100, 024017, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data, Physical Review D 100, 024004, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015─2017 LIGO Data, The Astrophysical Journal 879, 10, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Narrow-band search for gravitational waves from known pulsars using the second LIGO observing ru, Physical Review D 99, 122002, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run, Physical Review D 99, 104033, 2019
E Kun, Z Keresztes, L Á Gergely: Slowly rotating Bose-Einstein Condensate confronted with the rotation curves of 12 dwarf galaxies, arXiv preprint, 2019
L Á Gergely: The discovery of gravitational waves and the 2017 Nobel Prize in Physics, Astronomical Observarory, Cluj, Romania, 2019, 2019
C Gergely: Symmetry May 2019 cover, Symmetry, 2019
B Deák: Galaxy rotation curves in the Navarro-Frenk-White dark matter model and Verlinde's theory, MSc Thesis, 2019
C Gergely: Hamiltonian evolution and black hole perturbations in scalar-tensor gravitational theories, MSc Thesis, 2019
B Kacskovizs: Fourth post-Newtonian order study of extreme mass ratio, eccentric binaries, MSc Thesis, 2019
B Racskó: Lightlike shock waves in scalar-tensor theories, MSc Thesis, 2018
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run, Physical Review D 99, 122002, 2019
L Á Gergely, D Hobill: Gravitational lensing signatures on deviations from general relativity, poster presented at the Quantum Gravity in the Multimessenger Approach meeting (10-13 March 2020, Granada, Spain), 2020
C Gergely, Z Keresztes, L Á Gergely: EFT action of spherically symmetric, static black holes, poster presented at the Quantum Gravity in the Multimessenger Approach meeting (10-13 March 2020, Granada, Spain), 2020
B Racskó, L Á Gergely: Null shells in generalised kinetic gravity braiding theories, poster presented at the 30th Texas Symposium on Relativistic Astrophysics (15-20 December 2019, Portsmouth, UK), 2019
E Kun, P L B Biermann, L Á Gergely: High-energy neutrino emission of radio-loud active galactic nuclei, poster presented at the 30th Texas Symposium on Relativistic Astrophysics (15-20 December 2019, Portsmouth, UK), 2019
C Gergely: Black hole perturbations and gauge fixing in generalised kinetic braiding theories, 30th Texas Symposium on Relativistic Astrophysics (15-20 December 2019, Portsmouth, UK), 2019
L Á Gergely: Review Talk WG6 - Gravitational waves, Kick-off meeting of the COST Action CA18108 QG-MM "Quantum gravity phenomenology in the multi-messenger approach", 2019
L Á Gergely: Black hole perturbations in effective field theories of modified gravity, “Cosmology and Astrophysics Network for Theoretical Advances and Training Actions (CANTATA)” meeting, 2019
V Hegedűs: The gravitational magnetoelectric effect, BSc Thesis, University of Szeged, 2020
K Kolozsi: Screening mechanism in scalar-tensor gravitational theories, BSc Thesis, University of Szeged, 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely):: Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network, Phys. Rev. D 100, 064064 (2019), 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model, Phys. Rev. D 100, 122002 (2019), 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015-2017 LIGO Data, The Astrophysical Journal 879 (2019) 10, 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs, The Astrophysical Journal, Volume 883, Issue 2, article id. 149, 10 pp. (2019), 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo, The Astrophysical Journal, Volume 886, Issue 1, article id. 75, 15 pp. (2019), 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1, Physical Review D, Volume 100, Issue 10, id.104036, 2019
C Gergely, Z Keresztes, L Á Gergely: Minimally coupled scalar fields as imperfect fluids, Phys. Rev. D 102, 024044, 2020
E Kun, Z Keresztes, L Á Gergely: Slowly rotating Bose–Einstein condensate compared with the rotation curves of 12 dwarf galaxies, Astronomy & Astrophysics 633, A75, 2020
C Gergely, Z Keresztes, L Á Gergely: 2+1+1 GENERAL RELATIVISTIC HAMILTONIAN DYNAMICS AND GAUGE FIXING IN HORNDESKI GRAVITY, Romanian Astron. J. 30, 45, 2020
Z Keresztes, B Mikóczi: THE MOTION AND SPIN EVOLUTION OF EXTENDED BODIES IN ROTATING BLACK HOLE SPACETIMES, Romanian Astron. J. 30, 61, 2020
B Racskó, L Á Gergely: Null shells in kinetic gravity braiding scalar-tensor theories, Romanian Astron. J. 30, 25, 2020
Z Keresztes: Spinor-Scalar-Tensor gravitation, Conference talk: Teleparallel Gravity Workshop 2020, Tartu, Estonia, 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Model comparison from LIGO─Virgo data on GW170817's binary components and consequences for the merger remnant, Classical and Quantum Gravity, Volume 37, Issue 4, id.045006, 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M☉, The Astrophysical Journal Letters, Volume 892, Issue 1, id.L3, 24 pp. (2020), 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals, Classical and Quantum Gravity, Volume 37, Issue 5, id.055002, 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs, The Astrophysical Journal, Volume 893, Issue 2, id.100, 14 pp. (2020), 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses, Phys. Rev. D 102, 043015 (2020), 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo, Phys. Rev. D 101 084002, 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object, The Astrophysical Journal Letters, Volume 896, Issue 2, id.L44, 20 pp. (2020), 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): GW190412: Observation of a binary-black-hole coalescence with asymmetric masses, Physical Review D, Volume 102, Issue 4, article id.043015, 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Properties and Astrophysical Implications of the 150 M☉ Binary Black Hole Merger GW190521, The Astrophysical Journal Letters, Volume 900, Issue 1, id.L13, 27 pp., 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): GW190521: A Binary Black Hole Merger with a Total Mass of 150 M☉, Physical Review Letters, Volume 125, Issue 10, article id.101102, 2020
C Gergely, Z Keresztes, L Á Gergely: Gravitational dynamics in a 2 + 1 + 1 decomposed spacetime along nonorthogonal double foliations: Hamiltonian evolution and gauge fixing, Phys. Rev. D 99, 104071, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo, The Astrophysical Journal Letters 882, L24, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run, Physical Review D 100, 061101(R), 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run, Physical Review D 99, 104033, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs, Physical Review D 100, 062001, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run, Physical Review D 100, 024017, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data, Physical Review D 100, 024004, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run, Physical Review D 99, 122002, 2019
B P Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, including L Á Gergely and M Tápai): All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run, Physical Review D 99, 104033, 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely):: Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network, Phys. Rev. D 100, 064064 (2019), 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model, Phys. Rev. D 100, 122002 (2019), 2019
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1, Physical Review D, Volume 100, Issue 10, id.104036, 2019
C Gergely, Z Keresztes, L Á Gergely: Minimally coupled scalar fields as imperfect fluids, Phys. Rev. D 102, 024044, 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo, Phys. Rev. D 101 084002, 2020
LIGO Scientific Collaboration and Virgo Collaboration (including L Á Gergely): GW190412: Observation of a binary-black-hole coalescence with asymmetric masses, Physical Review D, Volume 102, Issue 4, article id.043015, 2020





 

Projekt eseményei

 
2024-05-30 11:33:07
Kutatóhely váltás
A kutatás helye megváltozott. Korábbi kutatóhely: Kísérleti Fizikai Tanszék (Szegedi Tudományegyetem), Új kutatóhely: Elméleti Fizika Tanszék (Szegedi Tudományegyetem).
2023-08-02 11:02:13
Kutatóhely váltás
A kutatás helye megváltozott. Korábbi kutatóhely: Elméleti Fizika Tanszék (Szegedi Tudományegyetem), Új kutatóhely: Kísérleti Fizikai Tanszék (Szegedi Tudományegyetem).
2023-04-19 14:50:41
Kutatóhely váltás
A kutatás helye megváltozott. Korábbi kutatóhely: Kísérleti Fizikai Tanszék (Szegedi Tudományegyetem), Új kutatóhely: Elméleti Fizika Tanszék (Szegedi Tudományegyetem).
2019-10-03 17:04:09
Résztvevők változása




vissza »