|
Kémiai reakciók dinamikájának atomi szintű vizsgálata és szabályozása: alapvető folyamatoktól a kis biorendszerek tanulmányozásáig
|
súgó
nyomtatás
|
Ezen az oldalon az NKFI Elektronikus Pályázatkezelő Rendszerében nyilvánosságra hozott projektjeit tekintheti meg.
vissza »
|
|
Közleményjegyzék |
|
|
I. Szabó and G. Czakó: Dynamics and novel mechanisms of SN2 reactions on ab initio analytical potential energy surfaces, J. Phys. Chem. A 121, 9005, 2017 | L. Krotos and G. Czakó: Does the Cl + CH4 --> H + CH3Cl reaction proceed via Walden inversion?, J. Phys. Chem. A 121, 9415, 2017 | B. Hajdu and G. Czakó: Benchmark ab initio characterization of the complex potential energy surfaces of the X- + NH2Y [X,Y = F, Cl, Br, I] reactions, J. Phys. Chem. A 122, 1886, 2018 | T. Győri, B. Olasz, G. Paragi, and G. Czakó: Effects of the level of electronic structure theory on the dynamics of the F- + CH3I reaction, J. Phys. Chem. A 122, 3353, 2018 | S. Góger, P. Szabó, G. Czakó, and G. Lendvay: Flame inhibition chemistry: rate coefficients of the reactions of HBr with CH3 and OH radicals at high temperatures determined by quasiclassical trajectory calculations, Energy Fuels DOI: 10.1021/acs.energyfuels.8b00989, 2018 | M. Stei, E. Carrascosa, A. Dörfler, J. Meyer, B. Olasz, G. Czakó, A. Li, H. Guo, and R. Wester: Stretching vibration is spectator in nucleophilic substitution, Sci. Adv. 4, eaas9544, 2018 | D. A. Tasi, Z. Fábián, and G. Czakó: Benchmark ab initio characterization of the inversion and retention pathways of the OH- + CH3Y [Y = F, Cl, Br, I] SN2 reactions, J. Phys. Chem. A 122, 5773, 2018 | B. Hajdu and G. Czakó: Benchmark ab initio characterization of the complex potential energy surfaces of the X- + NH2Y [X,Y = F, Cl, Br, I] reactions, J. Phys. Chem. A 122, 1886, 2018 | T. Győri, B. Olasz, G. Paragi, and G. Czakó: Effects of the level of electronic structure theory on the dynamics of the F- + CH3I reaction, J. Phys. Chem. A 122, 3353, 2018 | S. Góger, P. Szabó, G. Czakó, and G. Lendvay: Flame inhibition chemistry: rate coefficients of the reactions of HBr with CH3 and OH radicals at high temperatures determined by quasiclassical trajectory calculations, Energy Fuels 32, 10100, 2018 | M. Stei, E. Carrascosa, A. Dörfler, J. Meyer, B. Olasz, G. Czakó, A. Li, H. Guo, and R. Wester: Stretching vibration is spectator in nucleophilic substitution, Sci. Adv. 4, eaas9544, 2018 | D. A. Tasi, Z. Fábián, and G. Czakó: Benchmark ab initio characterization of the inversion and retention pathways of the OH- + CH3Y [Y = F, Cl, Br, I] SN2 reactions, J. Phys. Chem. A 122, 5773, 2018 | B. Olasz and G. Czakó: Mode-specific quasiclassical dynamics of the F- + CH3I SN2 and proton-transfer reactions, J. Phys. Chem. A 122, 8143, 2018 | D. Papp, B. Gruber, and G. Czakó: Detailed benchmark ab initio mapping of the potential energy surfaces of the X + C2H6 [X = F, Cl, Br, I] reactions, Phys. Chem. Chem. Phys. 21, 396, 2019 | B. Bastian, E. Carrascosa, A. Kaiser, J. Meyer, T. Michaelsen, G. Czakó, W. L. Hase, and R. Wester: Dynamics of proton transfer from ArH+ to CO, Int. J. Mass Spectrom. 438, 175, 2019 | B. Olasz and G. Czakó: High-level-optimized stationary points for the F-(H2O) + CH3I system: Proposing a new water-induced double-inversion pathway, J. Phys. Chem. A 123, 454, 2019 | B. Olasz and G. Czakó: Uncovering the role of the stationary points in the dynamics of the F- + CH3I reaction, Phys. Chem. Chem. Phys. 21, 1578, 2019 | D. A. Tasi, Z. Fábián, and G. Czakó: Rethinking the X- + CH3Y [X = OH, SH, CN, NH2, PH2; Y = F, Cl, Br, I] SN2 reactions, Phys. Chem. Chem. Phys. 21, 7924, 2019 | G. Czakó: Dynamics and mechanisms of fundamental chemical reactions, Magy. Kém. Foly. 125, 100, 2019 | G. Czakó, T. Győri, B. Olasz, D. Papp, I. Szabó, V. Tajti, and D. A. Tasi: Benchmark ab initio and dynamical characterization of the stationary points of reactive atom + alkane and SN2 potential energy surfaces, Phys. Chem. Chem. Phys. 22, 4298, 2020 | T. Győri and G. Czakó: Automating the development of high-dimensional reactive potential energy surfaces with the ROBOSURFER program system, J. Chem. Theory Comput. 16, 51, 2020 | G. Avila, D. Papp, G. Czakó, and E. Mátyus: Exact quantum dynamics background of dispersion interactions: case study for CH4.Ar in full (12) dimensions, Phys. Chem. Chem. Phys. 22, 2792, 2020 | D. A. Tasi, T. Győri, and G. Czakó: On the development of a gold-standard potential energy surface for the OH- + CH3I reaction, Phys. Chem. Chem. Phys. 22, 3775, 2020 | D. Papp, V. Tajti, T. Győri, and G. Czakó: Theory finally agrees with experiment for the dynamics of the Cl + C2H6 reaction, J. Phys. Chem. Lett. 11, 4762, 2020 | E. M. Orján, A. B. Nacsa, and G. Czakó: Conformers of dehydrogenated glycine isomers, J. Comput. Chem. 41, 2001, 2020 | B. Gruber and G. Czakó: Benchmark ab initio characterization of the abstraction and substitution pathways of the OH + CH4/C2H6 reactions, Phys. Chem. Chem. Phys. 22, 14560, 2020 | P. Papp, V. Tajti, and G. Czakó: Numerical separation of the front-side attack and double-inversion retention pathways of SN2 reactions, Chem. Phys. Lett. 755, 137780, 2020 | D. Papp and G. Czakó: Full-dimensional MRCI-F12 potential energy surface and dynamics of the F(2P3/2) + C2H6 --> HF + C2H5 reaction, J. Chem. Phys. 153, 064305, 2020 | P. Papp and G. Czakó: Rotational mode specificity in the F− + CH3I(v=0, JK) SN2 and proton-transfer reactions, J. Phys. Chem. A 124, 8943, 2020 | G. Czakó, T. Győri, D. Papp, V. Tajti, and D. A. Tasi: First-principles reaction dynamics beyond six-atom systems, J. Phys. Chem. A 125, 2385, 2021 | D. Papp and G. Czakó: Facilitated inversion complicates the stereodynamics of an SN2 reaction at nitrogen center, Chem. Sci. 12, 5410, 2021 | A. B. Nacsa and G. Czakó: Benchmark ab initio proton affinity of glycine, Phys. Chem. Chem. Phys. 23, 9663, 2021 | T. Szűcs and G. Czakó: Benchmark ab initio stationary-point characterization of the complex potential energy surface of the multi-channel Cl + CH3NH2 reaction, Phys. Chem. Chem. Phys. 23, 10347, 2021 | D. A. Tasi, C. Tokaji, and G. Czakó: A benchmark ab initio study of the complex potential energy surfaces of the OH− + CH3CH2Y [Y = F, Cl, Br, I] reactions, Phys. Chem. Chem. Phys. 23, 13526, 2021 | J. Meyer, V. Tajti, E. Carrascosa, T. Győri, M. Stei, T. Michaelsen, B. Bastian, G. Czakó, and R. Wester: Atomistic dynamics of elimination and nucleophilic substitution disentangled for the F− + CH3CH2Cl reaction, Nat. Chem. DOI: 10.1038/s41557-021-00753-8, 2021 | D. Papp, J. Li, H. Guo, and G. Czakó: Vibrational mode-specificity in the dynamics of the Cl + C2H6 → HCl + C2H5 reaction, J. Chem. Phys. 155, 114303, 2021 | V. Tajti, T. Győri, and G. Czakó: Detailed quasiclassical dynamics of the F− + CH3Br reaction on an ab initio analytical potential energy surface, J. Chem. Phys. 155, 124301, 2021 | D. Papp and G. Czakó: Vibrational mode-specific dynamics of the F(2P3/2) + C2H6 → HF + C2H5 reaction, J. Chem. Phys. accepted, 2021 | A. Á. Dékány and G. Czakó: Benchmark ab initio proton affinity and gas-phase basicity of α-alanine based on coupled-cluster theory and statistical mechanics, J. Comput. Chem. accepted, 2021 | G. Czakó, T. Győri, D. Papp, V. Tajti, and D. A. Tasi: First-principles reaction dynamics beyond six-atom systems, J. Phys. Chem. A 125, 2385, 2021 | D. Papp and G. Czakó: Facilitated inversion complicates the stereodynamics of an SN2 reaction at nitrogen center, Chem. Sci. 12, 5410, 2021 | A. B. Nacsa and G. Czakó: Benchmark ab initio proton affinity of glycine, Phys. Chem. Chem. Phys. 23, 9663, 2021 | T. Szűcs and G. Czakó: Benchmark ab initio stationary-point characterization of the complex potential energy surface of the multi-channel Cl + CH3NH2 reaction, Phys. Chem. Chem. Phys. 23, 10347, 2021 | D. A. Tasi, C. Tokaji, and G. Czakó: A benchmark ab initio study of the complex potential energy surfaces of the OH− + CH3CH2Y [Y = F, Cl, Br, I] reactions, Phys. Chem. Chem. Phys. 23, 13526, 2021 | J. Meyer, V. Tajti, E. Carrascosa, T. Győri, M. Stei, T. Michaelsen, B. Bastian, G. Czakó, and R. Wester: Atomistic dynamics of elimination and nucleophilic substitution disentangled for the F− + CH3CH2Cl reaction, Nat. Chem. 13, 977, 2021 | D. Papp, J. Li, H. Guo, and G. Czakó: Vibrational mode-specificity in the dynamics of the Cl + C2H6 → HCl + C2H5 reaction, J. Chem. Phys. 155, 114303, 2021 | V. Tajti, T. Győri, and G. Czakó: Detailed quasiclassical dynamics of the F− + CH3Br reaction on an ab initio analytical potential energy surface, J. Chem. Phys. 155, 124301, 2021 | D. Papp and G. Czakó: Vibrational mode-specific dynamics of the F(2P3/2) + C2H6 → HF + C2H5 reaction, J. Chem. Phys. 155, 154302, 2021 | A. Á. Dékány and G. Czakó: Benchmark ab initio proton affinity and gas-phase basicity of α-alanine based on coupled-cluster theory and statistical mechanics, J. Comput. Chem. 43, 19, 2022 | D. A. Tasi and G. Czakó: Uncovering an oxide ion substitution for the OH− + CH3F reaction, Chem. Sci. 12, 14369, 2021 | A. Á. Dékány, G. Z. Kovács, and G. Czakó: High-level systematic ab initio comparison of carbon- and silicon-centered SN2 reactions, J. Phys. Chem. A 125, 9645, 2021 | Z. Kerekes, D. A. Tasi, and G. Czakó: SN2 reactions with an ambident nucleophile: A benchmark ab initio study of the CN− + CH3Y [Y = F, Cl, Br, and I] systems, J. Phys. Chem. A 126, 889, 2022 | T. Győri and G. Czakó: ManyHF: A pragmatic automated method of finding lower-energy Hartree−Fock solutions for potential energy surface development, J. Chem. Phys. 156, 071101, 2022 | V. Tajti and G. Czakó: Vibrational mode-specific dynamics of the F− + CH3CH2Cl multi-channel reaction, Phys. Chem. Chem. Phys. 24, 8166, 2022 | D. Papp and G. Czakó: Rotational mode-specificity in the Cl + C2H6 → HCl + C2H5 reaction, J. Phys. Chem. A 126, 2551, 2022 | P. Tóth, T. Szűcs, and G. Czakó: Benchmark ab initio characterization of the abstraction and substitution pathways of the Cl + CH3CN reaction, J. Phys. Chem. A 126, 2802, 2022 | D. A. Tasi and G. Czakó: Unconventional SN2 retention pathways induced by complex formation: High-level dynamics investigation of the NH2− + CH3I polyatomic reaction, J. Chem. Phys. 156, 184306, 2022 | B. Gruber, V. Tajti, and G. Czakó: Full-dimensional automated potential energy surface development and dynamics for the OH + C2H6 reaction, J. Chem. Phys. 157, 074307, 2022 | T. Szűcs and G. Czakó: Benchmark ab initio potential energy surface mapping of the F + CH3NH2 reaction, Phys. Chem. Chem. Phys. 24, 20249, 2022 | D. Papp, V. Tajti, G. Avila, E. Mátyus, and G. Czakó: CH4·F− revisited: full-dimensional ab initio potential energy surface and variational vibrational states, Mol. Phys. DOI: 10.1080/00268976.2022.2113565, 2022 | C. Yin, V. Tajti, and G. Czakó: Full-dimensional potential energy surface development and dynamics for the HBr + C2H5 → Br(2P3/2) + C2H6 reaction, Phys. Chem. Chem. Phys. DOI: 10.1039/D2CP03580D, 2022 | A. Á. Dékány and G. Czakó: Benchmark ab initio proton affinity and gas-phase basicity of α-alanine based on coupled-cluster theory and statistical mechanics, J. Comput. Chem. 43, 19, 2022 | Z. Kerekes, D. A. Tasi, and G. Czakó: SN2 reactions with an ambident nucleophile: A benchmark ab initio study of the CN− + CH3Y [Y = F, Cl, Br, and I] systems, J. Phys. Chem. A 126, 889, 2022 | T. Győri and G. Czakó: ManyHF: A pragmatic automated method of finding lower-energy Hartree−Fock solutions for potential energy surface development, J. Chem. Phys. 156, 071101, 2022 | V. Tajti and G. Czakó: Vibrational mode-specific dynamics of the F− + CH3CH2Cl multi-channel reaction, Phys. Chem. Chem. Phys. 24, 8166, 2022 | D. Papp and G. Czakó: Rotational mode-specificity in the Cl + C2H6 → HCl + C2H5 reaction, J. Phys. Chem. A 126, 2551, 2022 | P. Tóth, T. Szűcs, and G. Czakó: Benchmark ab initio characterization of the abstraction and substitution pathways of the Cl + CH3CN reaction, J. Phys. Chem. A 126, 2802, 2022 | D. A. Tasi and G. Czakó: Unconventional SN2 retention pathways induced by complex formation: High-level dynamics investigation of the NH2− + CH3I polyatomic reaction, J. Chem. Phys. 156, 184306, 2022 | B. Gruber, V. Tajti, and G. Czakó: Full-dimensional automated potential energy surface development and dynamics for the OH + C2H6 reaction, J. Chem. Phys. 157, 074307, 2022 | T. Szűcs and G. Czakó: Benchmark ab initio potential energy surface mapping of the F + CH3NH2 reaction, Phys. Chem. Chem. Phys. 24, 20249, 2022 | D. Papp, V. Tajti, G. Avila, E. Mátyus, and G. Czakó: CH4·F− revisited: full-dimensional ab initio potential energy surface and variational vibrational states, Mol. Phys. 121, e2113565, 2023 | C. Yin, V. Tajti, and G. Czakó: Full-dimensional potential energy surface development and dynamics for the HBr + C2H5 → Br(2P3/2) + C2H6 reaction, Phys. Chem. Chem. Phys. 24, 24784, 2022 | C. Yin and G. Czakó: Automated full-dimensional potential energy surface development and quasi-classical dynamics for the HI(X1Σ+) + C2H5 → I(2P3/2) + C2H6 reaction, Phys. Chem. Chem. Phys. 24, 29084, 2022 | A. B. Nacsa and G. Czakó: Benchmark ab initio determination of the conformers, proton affinities, and gas-phase basicities of cysteine, J. Phys. Chem. A 126, 9667, 2022 | C. Yin and G. Czakó: Theoretical vibrational mode-specific dynamics studies for the HBr + C2H5 reaction, Phys. Chem. Chem. Phys. 25, 3083, 2023 | D. A. Tasi, T. Michaelsen, R. Wester, and G. Czakó: Quasi-classical trajectory study of the OH− + CH3I reaction: Theory meets experiment, Phys. Chem. Chem. Phys. 25, 4005, 2023 | T. Győri and G. Czakó: A comprehensive benchmark ab initio survey of the stationary points and products of the OH· + CH3OH system, J. Chem. Phys. 158, 034301, 2023 | B. Gruber and G. Czakó: High-level ab initio mapping of the multiple H-abstraction pathways of the OH + glycine reaction, Phys. Chem. Chem. Phys. 25, 5271, 2023 | A. B. Nacsa, M. Kígyósi, and G. Czakó: Protonation of serine: Conformers, proton affinities and gas-phase basicities at the "gold standard" and beyond, Phys. Chem. Chem. Phys. 25, 8891, 2023 | C. Yin and G. Czakó: Vibrational mode-specific quasi-classical trajectory studies for the two-channel HI + C2H5 reaction, Phys. Chem. Chem. Phys. 25, 9944, 2023 | A. B. Nacsa, V. Tajti, and G. Czakó: Dynamics of the Cl− + CH3I reaction on a high-level ab initio analytical potential energy surface, J. Chem. Phys. 158, 194306, 2023 | A. Á. Dékány and G. Czakó: Exploring the versatile reactivity of the F− + SiH3Cl system on a full-dimensional coupled-cluster potential energy surface, J. Chem. Phys. 158, 224303, 2023 | T. Gstir, T. Michaelsen, B. A. Long, A. B. Nacsa, A. Ayasli, D. Swaraj, F. Zappa, F. Trummer, S. G. Ard, N. S. Shuman, G. Czakó, A. A. Viggiano, and R. Wester: The influence of fluorination on the dynamics of the F− + CH3CH2I reaction, Phys. Chem. Chem. Phys. 25, 18711, 2023 | C. Yin and G. Czakó: Competition between the H-abstraction and the X-abstraction pathways in the HX (X = Br, I) + C2H5 reactions, Phys. Chem. Chem. Phys. 25, 20241, 2023 | A. Giricz, G. Czakó, and D. Papp: Alternating stereospecificity upon central-atom change: Dynamics of the F− + PH2Cl SN2 reaction compared to its C- and N-centered analogues, Chem. Eur. J. DOI: 10.1002/chem.202302113, 2023 | B. Gruber, V. Tajti, and G. Czakó: Vibrational mode-specific dynamics of the OH + C2H6 reaction, J. Phys. Chem. A 127, 7364, 2023 | T. Szűcs and G. Czakó: ManyHF-based full-dimensional potential energy surface development and quasi-classical dynamics for the Cl + CH3NH2 reaction, J. Chem. Phys. DOI: 10.1063/5.0166680, 2023 | C. Yin and G. Czakó: Full-dimensional automated potential energy surface development and detailed dynamics for the CH2OO + NH3 reaction, Phys. Chem. Chem. Phys. DOI: 10.1039/D3CP03469K, 2023 | A. Giricz, G. Czakó, and D. Papp: Alternating stereospecificity upon central-atom change: Dynamics of the F− + PH2Cl SN2 reaction compared to its C- and N-centered analogues, Chem. Eur. J. 29, e202302113, 2023 | T. Szűcs and G. Czakó: ManyHF-based full-dimensional potential energy surface development and quasi-classical dynamics for the Cl + CH3NH2 reaction, J. Chem. Phys. 159, 134306, 2023 | C. Yin and G. Czakó: Full-dimensional automated potential energy surface development and detailed dynamics for the CH2OO + NH3 reaction, Phys. Chem. Chem. Phys. 25, 26917, 2023 | B. Ballay, T. Szűcs, D. Papp, and G. Czakó: Phosphorus-centered ion-molecule reactions: benchmark ab initio characterization of the potential energy surfaces of the X− + PH2Y [X, Y = F, Cl, Br, I] systems, Phys. Chem. Chem. Phys. 25, 28925, 2023 |
|
|
|
|
|
|
vissza »
|
|
|