Differenciálegyenletek időkésleltetéssel  részletek

súgó  nyomtatás 
vissza »

 

Projekt adatai

 
azonosító
129322
típus K
Vezető kutató Krisztin Tibor
magyar cím Differenciálegyenletek időkésleltetéssel
Angol cím Delay differential equations
magyar kulcsszavak időkésleltetés, attraktor, periodikus pálya, összekötő pálya, homoklinikus pálya, hiperbolicitás, stabilitás, állapotfüggő késleltetés
angol kulcsszavak time delay, attractor, periodic orbit, connecting orbit, homoclinic orbit, hyperbolicity, stability, state-dependent delay
megadott besorolás
Matematika (Műszaki és Természettudományok Kollégiuma)100 %
Ortelius tudományág: Differenciálegyenletek
zsűri Matematika–Számítástudomány
Kutatóhely Bolyai Intézet (Szegedi Tudományegyetem)
résztvevők Balázs István
Benedek Gábor István
Dudás János
Pham Ngoc
Van Leeuwen-Polner Mónika
Vas Gabriella Ágnes
projekt kezdete 2018-09-01
projekt vége 2024-03-31
aktuális összeg (MFt) 13.622
FTE (kutatóév egyenérték) 16.74
állapot aktív projekt





 

Zárójelentés

 
kutatási eredmények (magyarul)
Időkésleltetéses differenciálegyenleteket vizsgáltunk. Ezek az egyenletek végtelen dimenziós dinamikai rendszereket definiálnak. Elméleti kutatásaink fontos egyenlettípusokra dolgoztak ki új módszereket. A főbb eredmények: • A nevezetes Mackey-Glass egyenlet egy új megközelítéssel vizsgáltuk. Bonyolult szerkezetű, de stabil periodikus pályák létezését igazoltuk. Ősszekötő és speciálisan homoklinikus pályák létezése van publikálás alatt. • Neuronhálózatokat modellező absztrakt egyenleteket vizsgáltunk a funkcionálanalízis eszközeivel. Karakterizáltuk a linearizált egyenlet spektrumát. Alkalmazásként Hopf bifurkációt bizonyítottunk, és kiszámoltuk a Ljapunov együtthatót. • Állapotfüggű késleltetésű egyenletek új típusaira vezettünk be alkalmas fázistereket, igazoltuk periodikus pályák létezését, leírtuk a megoldás sokaság geometriai tulajdonságait. • Járványterjedési modelleket vizsgáltunk. 18 folyóiratcikket publikáltunk. A Scimago journal ranking szerint 17 cikk Q1 besorolású, ebből 6 D1 besorolású folyóiratban jelent meg. További 5 előkészületben lévő dolgozatot fogunk még publikálásra benyújtani feltüntetve a projekt támogatását.
kutatási eredmények (angolul)
We studied delay differential equations. These equations define infinite-dimensional dynamical systems. In our theoretical investigations, we developed new methods for important classes of delay differential equations. The main results: • We studied the famous Mackey-Glass type equations by introducing a new approach. Stable periodic orbits with complicated structures were obtained. The existence of connecting and in particular, homoclinic orbits is under publication. • Delayed neural field models were investigated as a dynamical system in an appropriate functional analytic setting. The spectrum of the linearized equation was characterized. As an application, Hopf bifurcation was shown, and we computed the Lyapunov coefficient. • We considered different models for epidemic spread. We published 18 research papers. According to the Scimago journal ranking, 17appeared in Q1-ranked journals, and 6 in D1-ranked journals. An additional 5 papers are under preparation with the support of this project.
a zárójelentés teljes szövege https://www.otka-palyazat.hu/download.php?type=zarobeszamolo&projektid=129322
döntés eredménye
igen





 

Közleményjegyzék

 
Opoku-Sarkodie, Richmond; Bartha, Ferenc A.; Polner, Mónika; Röst, Gergely: Dynamics of an SIRWS model with waning of immunity and varying immune boosting period, J. Biol. Dyn. 16 (2022), no. 1, 596–618., 2022
Opoku-Sarkodie, R.; Bartha, F. A.; Polner, M.; Röst, G.: Bifurcation analysis of waning-boosting epidemiological models with repeat infections and varying immunity periods, Math. Comput. Simulation 218 (2024), 624–643., 2024
Spek, Len; van Gils, Stephan A.; Kuznetsov, Yuri A.; Polner, Mónika: Hopf bifurcations of two population neural fields on the sphere with diffusion and distributed delays, SIAM J. Appl. Dyn. Syst. 23 (2024), no. 3, 1909–1945., 2024
Gábor Benedek, Tibor Krisztin, Robert Szczelina: Stable Periodic Orbits for Delay Differential Equations with Unimodal Feedback, Journal of Dynamics and Differential Equations, 10 December 2024, online, 2024
Ferenc A. Bartha, Ábel Garab, Tibor Krisztin: Morse Decomposition of Scalar Differential Equations with State-Dependent Delay, Journal of Dynamics and Differential Equations. Published: 27 February 2025, online, 2025
Bartha, Ferenc A.; Krisztin, Tibor; Vígh, Alexandra,: Stable periodic orbits for the Mackey–Glass equation., J. Differential Equations 296 (2021), 15–49., 2021
I. Balázs, P. Getto, G. Röst: A continuous semiflow on a space of Lipschitz functions for adifferential equation with state-dependent delay from cell biology, J. Differential Equations, accepted, 2021
I. Balázs, P. Getto, G. Röst: A continuous semiflow on a space of Lipschitz functions for adifferential equation with state-dependent delay from cell biology, J. Differential Equations, 304 (2021), 73–101., 2021
Spek, L.; Dijkstra, K.; van Gils, S.A.; Polner, M.: Dynamics of delayed neural field models in two-dimensional spatial domains, Journal of Differential Equations 317 (2022), 439-473., 2022
Opoku-Sarkodie, R.; Bartha, F.A.; Polner, M.; Röst, G.: Dynamics of an SIRWS model with waning of immunity and varying immune boosting period, Journal of Biological Dynamics 16 (2022), 596-618., 2022
Tibor Krisztin, Hans-Otto Walther: Solution manifolds of differential systems with discrete state-dependent delays are almost graphs, Discrete Contin. Dyn. Syst. 43 (2023), no. 8, 2973–2984., 2023
I. Balázs, P. Getto, G. Röst: A continuous semiflow on a space of Lipschitz functions for adifferential equation with state-dependent delay from cell biology, J. Differential Equations, 304 (2021), 73–101., 2021
István Balázs, Tibor Krisztin: Global stability for price models with delay, J. Dyn. Diff. Equat. 31 (2019) 1327–1339., 2019
István Balázs, Tibor Krisztin: A Differential equation with a state-dependent queueing delay, benyújtva, 2019
Szandra Beretka, Gabriella Vas: Saddle-node bifurcation of periodic orbits for a delay differential equation, benyújtva, 2019
Szandra Beretka, Gabriella Vas: Stable periodic solutions for Nazarenko's equation, benyújtva, 2019
István Balázs, Tibor Krisztin: A differential equation with a state-dependent queueing delay, SIAM J. Math. Anal. 52-4 (2020), pp. 3697-3737, 2020
Szandra Beretka, Gabriella Vas: Saddle-node bifurcation of periodic orbits for a delay differential equation, J. Differential Equations 269 (2020), no. 5, 4215–4252., 2020
Szandra Beretka, Gabriella Vas: Stable periodic solutions for Nazarenko's equation, Communications on Pure & Applied Analysis 19 (2020), no. 6, 3257–3281., 2020
István Balázs, Gergely Röst: Hopf bifurcation for Wright-type delay differential equations: The simplest formula, period estimates, and the absence of folds, Communications in Nonlinear Science and Numerical Simulation, Volume 84, 105188 (2020), 2020
Muqbel, Khalil; Vas, Gabriella; Röst, Gergely: Periodic orbits and global stability for a discontinuous SIR model with delayed control, Qual. Theory Dyn. Syst. 19 (2020), no. 2, Paper No. 59, 27 pp., 2020
K. Dijkstra, M. Polner, L. Spek, S. A. van Gils: Dynamics of delayed neural field models in two-dimensional spatial domains, submitted, 2020
J. Dudás, T. Krisztin,: Global stability for the 3-dimensional logistic map, submitted, 2020
I. Balázs, P. Getto, G. Röst: A continuous semiflow on a space of Lipschitz functions for a differential equation with state-dependent delay from cell biology, submitted, 2020
I. Balázs, G. Röst: Hopf bifurcations in Nicholson's blowfly equation are always supercritical., submitted, 2020
J. Dudás, T. Krisztin,: Global stability for the 3-dimensional logistic map, Nonlinearity 34 (2021), no. 2, 894–938., 2021
Krisztin, Tibor: Periodic solutions with long period for the Mackey–Glass equation, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 83, 12 pp., 2021
I. Balázs, G. Röst: Hopf bifurcations in Nicholson's blowfly equation are always supercritical., International Journal of Bifurcation and Chaos, 31(05), 2150071 (2021), 2021
Balázs István, Krisztin Tibor: A Differential Equation with a State-Dependent Queueing Delay, SIAM JOURNAL ON MATHEMATICAL ANALYSIS 52: (4) pp. 3697-3737., 2020





 

Projekt eseményei

 
2022-05-10 14:12:15
Résztvevők változása




vissza »