Többmezős variációs elvek és végeselem-modellek a nemline-áris rugalmasságtanban
zsűri
Gépész-, Építő-, Építész- és Közlekedésmérnöki
Kutatóhely
Műszaki Mechanikai Intézet (Miskolci Egyetem)
projekt kezdete
2001-01-01
projekt vége
2005-12-31
aktuális összeg (MFt)
3.662
FTE (kutatóév egyenérték)
0.00
állapot
lezárult projekt
Zárójelentés
kutatási eredmények (magyarul)
Egy feszültségmezőn és forgásmezőn alapuló általános, nemlineáris héjelmélet került kidolgozásra. A dimenzió szerinti redukálás variációs hátterében a kiegészítő virtuális munka elv általánosított alakja áll. Az I. Piola-Kirchhoff feszültségvektorokra vonatkozó transzlációs egyensúlyi egyenletek a priori kielégítése két elsőrendű feszültségfüggvény-vektor bevezetésével, a forgási egyensúlyi egyenletek kielégítése pedig a forgásmező, mint Lagrange-multiplikátor alkalmazásával történt. A klasszikus héjelméletek alapjául szolgáló kinematikai és feszültségi hipotézisek nem kerültek alkalmazásra, így a háromdimenziós anyagegyenletek módosítások nélkül vehetők figyelembe.
A kidolgozott héjelmélet alapján egy feszültségmezőn és forgásmezőn alapuló új hp-verziós lemezelem-modell és végeselem-program került kifejlesztésre lineárisan rugalmas lemezfeladatok megoldására. Numerikus úton igazolásra került, hogy a lemezmodell aszimptotikusan korrekt és modellezési hibája lényegesen jobb, mint a klasszikus Kirchhoff- és Reissner-Mindlin lemezmodelleké. A kifejlesztett hp-verziós elem-modell rendkívül vékony és összenyomhatatlan anyagú lemezek esetén is numerikus problémák (shear locking és incompressibility locking) nélküli feszültségeket eredményez, nemcsak magasabb rendű p-, hanem alacsony rendű h-típusú approximációnál is.
kutatási eredmények (angolul)
Starting from the three-dimensional principle of complementary virtual work, a stress-based dimensionally reduced shell model has been derived. The three-dimensional translational equilibrium equations, written in terms of the first Piola-Kirchhoff stress vectors, are a priori satisfied using two first-order stress function vectors. The rotational equilibrium equations are enforced in a weak sense using the rotations as Lagrangian multipliers. No conventional kinematical assumptions have been applied and the shell model uses unmodified three-dimensional constitutive equations.
Based on the shell model derived, a new hp-version finite element model and a finite element code have been developed for linearly elastic plates (including the membrane problem). The numerical results show that rates of convergence in the energy norm and in the stress computations are practically independent of the Poisson ratio and thickness of the plate, i.e., the elements are free from both incompressibility locking and shear locking. The stress computation is robust, reliable and accurate for not only higher order p- but also for low order h-type approximations, even for extremely thin plates.
E. Bertóti: Dimensional reduction for plates in terms of stresses, Oberseminar ''Analysis und Numerische Methoden für partielle Differentialgleichungen der Strömungs- und ...', Mathematisches Institut A, Uni. Stuttgart, Germany, 2001
Bertóti E.: Variációs elvek és numerikus modellek feszültségmezővel és forgásmezővel, Emlékülés a 100 éve született Sályi István professzor tiszteletére,
MTA Miskolci Akadémiai Bizottság Székháza, Miskolc, 2001
E. Bertóti: Locking-free plate bending elements - a complementary energy approach, Conference on Numerical Methods and Computational Mechanics in Science
and Engineering, July 15-19, 2002, Miskolc, Hungary, p. 32., 2002
E. Bertóti: Stress-based and locking-free hp finite elements for thin elastic plates, Proceedings of the Fifth World Congress on Computational Mechanics (WCCM
V), July 7-12, 2002, Vienna, Austria, pp. 1-10. ISBN 3-9501554-0-6, wccm.tuwien.ac.at, 2002
E. Bertóti: Dual-mixed p and hp finite elements for elastic membrane problems, International Journal for Numerical Methods in Engineering, Vol. 53, No.
1, pp. 3--29, 2002
Bertóti E.: Héjak nemlineáris elmélete feszültségmezővel és forgásmezővel, MTA doktori értekezés, Magyar Tudományos Akadémia -- Miskolci Egyetem,
Miskolc, 133 p., 2003
E. Bertóti: Dual-mixed variational formulation and finite element models for plates and
shells, 303. WE-Heraeus Seminar, September 7-10, 2003, Bad Honnef, Germany, 2003
B. Szabó and E. Bertóti: Application of Trefftz fields in post-solution procedures, Proceedings of the Sixth World Congress on Computational Mechanics (WCCM
VI), September 5-10, 2004, Beijing, China, Springer-Verlag, pp. 653-660., 2004
E. Bertóti: Derivation of plate and shell models using the Fraeijs de Veubeke variational
principle, Proceedings of the 5th International Conference on Computation of Shell
and Spatial Structures, June 1-4, 2005, Salzburg, Austria, pp. 1-4, www.iassiacm2005.de, 2005, 2005
Bertóti E.: Nemlineáris lemezmodell feszültségmezővel és forgásmezővel, IX. Magyar Mechanikai Konferencia, 2003. augusztus 27 - 29, Miskolc, 2003
E. Bertóti: An error indicator for p-finite elements, FEM in Mathematics and Engineering - A scientific meeting on the 70th birtday of Prof. Barna Szabó, Miskolc Center of the Hungarian Academy of Sciences, July 5, 2005, 2005
Bertóti E.: Rugalmasságtani feladatok numerikus megoldása feszültségmezőn alapuló végeselem-modellek alkalmazásával, 5. Alkalmazott Matematika Napja, 2003. február 26, ELTE, Budapest., 2003
Bertóti E.: Feszültségmezőre épülő végeselem-modellek a szilárd testek mechanikájában, MTA Műszaki Tudományok Osztályának ülése, 2005. április 28, MTA Miskolci Akadémiai Bizottság Székháza, Miskolc, 2005, 2005
Bertóti E.: Nemlineáris héjmodell elsőrendű feszültségfüggvényekkel, Egyes kontinuummechanikai feladatok - Tudományos ülés Kozák Imre professzor 75. születésnapja tiszteletére, 2005. szeptember 1, MTA Miskolci Akadémiai Bizottság Székháza, 2005
E. Bertóti: Dual-mixed hp finite element models in elasticity, International Workshop on ``Direct and Inverse Field Computations in Mechanics'', November 7-11, 2005, Linz, Austria, 2005, 2005
E. Bertóti: On the stress function approach in three-dimensional elasticity, Submitted for publication in Acta Mechanica, November 15, 2005