Sorelmélet és végtelen sorokkal kapcsolatos egyenlőtlenségek
Angol cím
Theory of series and inequalities concerning infinite series
zsűri
Matematika–Számítástudomány
Kutatóhely
Bolyai Intézet (Szegedi Tudományegyetem)
projekt kezdete
2003-01-01
projekt vége
2007-12-31
aktuális összeg (MFt)
2.418
FTE (kutatóév egyenérték)
0.00
állapot
lezárult projekt
Zárójelentés
kutatási eredmények (magyarul)
2003 ota 29 dolgozatom jelent meg(lasd. Math.Rev. ) es 11 tovabbi mar kozlesre elfogadott. Mind Hazai es kulfoldi ismert folyoirat.
Ebben az idoszakban szamos uj osztalyat szamsorozatoknak definialtam es ezekre sikerult tobb klasszikus eredmenyt altalanositanom. Ezekhez a vizsgalatokhoz tobb kulfoldi szerzo is csatlakozott.
Tobb dolgozatom foglalkozik sorelmeleti, beagyazasi, eros approximacios kerdesekkel is.
Betegsegem miatt tobb kulfoldi konferencia-felkerest is kenytelen voltam elharitani, igy ezeken a rovatokon sok penz megmaradt.
Ugy gondolom, hogy csak ezen a teruleten nem teljesitettem a tervet.
A fenti okbol ujabb OTKA palyazatot nem is adtam be.
kutatási eredmények (angolul)
I have published 29 papers and 11 is accepted. I defined more classes of sequences and extended several classical theorems for these classes. I want to recall only one of my results. Among others I extended the classical Chaundy-Jolliffe theorem on the uniform convergence of sine series to a wide class of sequences called ''the class of mean rest bounded variation sequences''. This is the widest class where the Chaundy- Jolliffe theorem holds. I cite from the Math. Re. the following two facts to illustrate the impact of this result.
Author Citations for '' László Leindler ''
László Leindler is cited 139 times by 58 authors in the MR Citation Database Most Cited Publications Citations Publication 11
http://www.ams.org/mathscinet-getitem?mr=1941748>MR1941748
http://www.ams.org/mathscinet-getitem?mr=1941748>(2003m:42010)
http://www.ams.org/mathscinet/search/publications.html?pg1=IID&s1=112170>Leindler,
L. A new class of numerical sequences and its applications to sine and cosine series.
http://www.ams.org/mathscinet/search/journaldoc.html?cn=Anal_Math>Anal.
Math.
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=205696>28
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=205696>(2002),
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=205696>no.
4, 279--286.
I also proved some theorems for orthogonal series, embbedig type and
approximation type. More authors have joined to my results. I had missed more invitations because of my health problems.
Leindler László: Generalization of embedding relations of Besov classes, Analysis Math., 2005
Leindler László: A theorem on Besov-Nikol\'skii class, Publ. Math. Debrecen, 2004
Leindler László: On the absolute Cesaro summability, Annales Univ. Sci. Bp., 2004
Leindler László: On the divergence of partial sums of orthogonal series, Publ. Math. Debrecen, 2004
Leindler László: Necessity conditions with almost monotone sequences about orthogonal series, Acta Sci. Math. Szeged, 2004
Leindler László: On the absolute Riesz summability factors, Journ. of Ineq. in Pure and Appl. Math., 2004
Leindler László: Factorization of inequalities, Journal of Inequalities in Pure and Applied Mathematics, 2004
Leindler László: On the degree of approximation of continuous functions, Acta Math. Hungar., 2004
Leindler László: Relations among Fourier coefficients and sum-functions, Acta Math. Hungar., 2004
Leindler László: Additions to two theorems of Tandori, Acta Sci. Math. Szeged, 2004
Leindler László: Trigonometric approximation in Lp-norm, Journal of Mathematical Analysis and Applications, 2005
Leindler László: On embedding of the class H^omega, Journal of Inequalities in Pure and Applied Mathematics, 2004
Leindler László: On relations of coefficient conditions, Journal of Inequalities in Pure and Applied Mathematics, 2004
Leindler László: Integrability of sine and cosine series having coefficients of a new class, The Australian Journal of Mathematical Analysis and Applications, 2004
Leindler László: A survey of certain results on strong approximation by orthogonal series, Central European Journal of Mathematics, 2004
Projekt eseményei
2014-02-24 12:00:23
Kutatóhely váltás
A kutatás helye megváltozott. Korábbi kutatóhely: Analízis Tanszék (Szegedi Tudományegyetem), Új kutatóhely: Bolyai Intézet (Szegedi Tudományegyetem).