|
Rendszermodellezés mérési adatokból, hibrid-neurális megközelítés
|
súgó
nyomtatás
|
Ezen az oldalon az NKFI Elektronikus Pályázatkezelő Rendszerében nyilvánosságra hozott projektjeit tekintheti meg.
vissza »
|
|
Közleményjegyzék |
|
|
József Valyon, Gábor Horváth: Selection methods for extended least squares support vector machines, International Journal of Intelligent Computing and Cybernetics, Vol. 1. No. 1. pp. 69-93., 2008 | Sragner, L., Schoukens, J. and Horváth, G.: Modelling of a Slightly Nonlinear System: A Neural Network Approach, Proc. of the 6th IFAC-Symposium on Nonlinear Control Systems, NOLCOS 2004, 2004 | Valyon, J., Horváth, G: A WEIGHTED GENERALIZED LS-SVM, Periodica Polytechnica, Elec. Eng. Vol. 47. No. 3-4. pp. 229-252, 2004 | Valyon, J., Horváth, G: A Sparse Least Squares Support Vector Machine Classifier, Proc. of the International Joint Conference on Neural Networks, IJCNN 2004. pp. 543-548. Budapest, Hungary, 2004 | Berényi, P. Lampaert, V. Horváth, G. Swevers: Nonlocal hysteresis function identification and compensation with neural networks, IEEE. Trans. on Instrumentation and Measurement, 2005 | Horváth, G, Szabó, T.: Kernel CMAC with Improved Capability, IEEE Trans. on Systems, Man and Cybernetics, Part B. Vol. 37. No. 1. pp. 124-138., 2007 | Horváth, G: Neural Networks in System Modeling, http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/Gabor_Horvath.pdf, 2006 | Valyon, J. Horváth, G: A Robust LS-SVM Regression, International Conference on Computer Sciences, Prague, 2005 August 26-28., pp. 148-153, 2005 | Valyon, J. Horváth, G: A Sparse Robust Model for Linz-Donawitz Steel Converter, IEEE Int. Conf. of Instrumentation and Measurement Society, Warsawa, Poland,, 2007 | Valyon, J. Horváth, G: Least Squares Support Vector Gépek adatbányászati alkalmazásokra, Híradástechnika, vol. LX. No. 6. pp. 33-39, 2005 | Valyon, J.: Extended LS-SVM for System Modelling, PhD disszertáció, Budapesti Műszaki és Gazdaságtudományi Egyetem, 2007 | Paduart, J., Horváth, G. and Schoukens, J.: Fast Identification of Systems with Nonlinear Feedback, Proc. of the 6th IFAC-Symposium on Nonlinear Control Systems, NOLCOS 2004, pp. 525-530. Stuttgart, Germany., 2004 | Horváth, G.: Kernel CMAC: an Efficient Neural Network for Classification and Regression, Acta Polytechnica Hungarica, Vol. 3. No. 1 pp. 5-20, 2006 | J. Valyon, G. Horváth: A Sparse Robust Model for Linz-Donawitz Steel Converter, IEEE. Trans. on Instrumentation and Measurement, 2008. megjelenés alatt, 2008 | Dobrowiecki T.P., J. Schoukens: Measuring linear approximation to weakly nonlinear MIMO system, Automatica 43(2007), pp. 1731-1751, 2007 | T. Dobrowiecki, and J. Schoukens,: Linear Approximation of Weakly Nonlinear MIMO Systems, IEEE Trans of Instrumentation and Measurement, Vol 56, Nr 3, June 2007, pp. 887-894, 2007 | N. Toth, B. Pataki: Classification Confidence Weighted Majority Voting Using Decision Treee Classifiers, International Journal of Intelligent Computing and Cybernetics, Vol. 1. No. 2. megjelenés alatt., 2008, 2008 | J. Schoukens, R. Pintelon , T. Dobrowiecki, and Y. Rolain: Identification of linear systems with nonlinear distortions, Automatica Vol. 41, 2005, pp. 491-504, 2005 | G. Takács, B. Pataki: Lower Bounds of the Vapnik-Chervonenkis Dimension of Convex Polytope Classifiers, Proc. of the 11th International Conference on Intelligent Engineering Systems, INES 2007, pp. 100-104, 2007 | Dobrowiecki, T.P. Schoukens, J.: Optimized Excitation Signals for MIMO Frequency Response Function Measurements, IEEE TRans. on Instrumentation and Measurements Vol. 55. No. 6. pp. 1-8. 2006, 2006 | J. Schoukens, T. Dobrowiecki, and R. Pintelon: Estimation of the risk for an unstable behavior of feedback systems in the presence of nonlinear distortions, Automatica Vol. 40, 2004, pp. 1275-1279., 2004 | Horváth, G.: Kernel CMAC: an Efficient Neural Network for Classification and Regression, Acta Polytechnica Hungarica Vol. 3. No. 1. pp. 5-20., 2006 |
|
|
|
|
|
|
vissza »
|
|
|