Energia sűrűségfunkcionálok és deriváltjaik az alapállapoti és az időfüggő sűrűségfunkcionál elméletében  részletek

súgó  nyomtatás 
vissza »

 

Projekt adatai

 
azonosító
48675
típus PD
Vezető kutató Gál Tamás
magyar cím Energia sűrűségfunkcionálok és deriváltjaik az alapállapoti és az időfüggő sűrűségfunkcionál elméletében
Angol cím Energy density functionals and their derivatives in ground-state and in time-dependent density-functional theory
zsűri Fizika 1
Kutatóhely TTK Elméleti Fizikai Tanszék (Debreceni Egyetem)
projekt kezdete 2004-10-01
projekt vége 2008-12-31
aktuális összeg (MFt) 18.302
FTE (kutatóév egyenérték) 0.00
állapot lezárult projekt





 

Zárójelentés

 
kutatási eredmények (magyarul)
1. Tisztáztam a K-megőrző funkcionális deriválás matematikáját, ahol K a funkcionális változó valamilyen invertálható függvényének integrálja. 2. Kidolgoztam a funkcionálok egyidejű kényszerek alatti deriválásának módszerét. 3. Megmutattam, hogyan származtathatók a funkcionálok különböző változóit csatoló kényszerek által megszorított funkcionális deriváltak, egy folyadék-dinamikai alkalmazás elemzésével. 4. Kimutattam, hogy a megszorított második deriváltak koncepciója magában foglal minden, a kényszereknek köszönhető effektust az egyensúlyok stabilitás-analízisében. A bevezetett elmélet alkalmazásaként meghatároztam a kétkomponensű folyadékok homogén egyensúlyának stabilitási kritériumait. 5. A normamegőrző funkcionális deriválás felhasználásával kiküszöböltem egy, az energia funkcionálok deriválásával kapcsolatos problémát a spin-sűrűségfunkcionál elméletben. 6. Elemeztem a normamegőrző második deriváltak szerepét az időfüggő sűrűségfunkcionál elméletben, megmutatván, hogy a normamegőrző deriváltak nem tudják feloldani a hatás sűrűségfunkcionál második deriváltjával kapcsolatos oksági paradoxont. 7. Kimutattam az elsőfokú homogén alakú sűrűségfunkcionálok előnyét a Schrödinger egyenlet formájából következően. 8. Levezettem egy új formát az egyrészecskés kinetikus energia sűrűségfunkcionálra. 9. Új levezetését adtam a Hartree-Fock–Kohn-Sham hibrid módszereknek.
kutatási eredmények (angolul)
1. The mathematics of K-conserving functional differentiation, with K being the integral of some invertible function of the functional variable, has been clarified. 2. The method of differentiating functionals under simultaneous constraints has been established. 3. A guide for obtaining the corresponding constrained functional derivatives for conservation constraints coupling the functional variables has been given, with analysing an application in liquid film dynamics. 4. The concept of constrained second derivatives has been shown to incorporate all the effects due to constraints in the stability analysis of equilibria. As an application of the theory introduced, the stability criteria for the homogeneous equilibrium of a general two-component fluid have been derived. 5. A problem regarding the differentiability of energy functionals in spin-density-functional theory has been resolved by the use of number-conserving functional differentiation. 6. The role of number-conserving second derivatives in time-dependent density-functional theory has been investigated, showing that number-conserving derivatives cannot resolve the causality paradox connected with the second derivative of the action density functional. 7. An advantage of density functionals of form homogeneous of degree one has been pointed out to follow from the structure of the Schrödinger equation. 8. A new form for the one-particle kinetic-energy density functional has been proposed. 9. A new derivation of the Hartree-Fock–Kohn-Sham hybrid schemes has been given.
a zárójelentés teljes szövege http://real.mtak.hu/1852/
döntés eredménye
igen





 

Közleményjegyzék

 
Gál T: On the role of second number-conserving functional derivatives, Phys Lett A 355: 148-151, 2006
Gál T: A new expression for the one-particle kinetic energy as a density functional, J Phys B 40: 111-116, 2006
Gál T: The mathematics of functional differentiation under conservation constraint, J Math Chem 42: 661-676, 2007
Gál T: Functional differentiation under simultaneous conservation constraints, J Phys A 40: 2045-2052, 2007
Gál T: Differentiation of functionals with variables coupled by constraints: Analysis through ..., J Math Phys 48: 053520, 2007
Gál T: Differentiability of energy functionals in spin-density-functional theory, Phys Rev B 75: 235119, 2007
Gál T: The N-particle wave function as a homogeneous functional of the density, Int J Quantum Chem 107: 2586-2594, 2007
Gál T: Stability of equilibrium under constraints, arXiv:0708.1694, 2007
Gál T: Treatments of the exchange energy in density-functional theory, Int J Mod Phys B, in press, 2008




vissza »