|
Differenciálegyenletek megoldásainak aszimptotikus viselkedése
|
súgó
nyomtatás
|
Ezen az oldalon az NKFI Elektronikus Pályázatkezelő Rendszerében nyilvánosságra hozott projektjeit tekintheti meg.
vissza »
|
|
Közleményjegyzék |
|
|
B. Bánhelyi, T. Csendes, L. Hatvani and B. Garay: A computer-assisted proof and location of chaos: the case of a forced damped pendulum equation, Proceedings of GO, 2005 | J. Karsai and J.R. Graef: Behavior of solutions of second order differential equations with nonlinear damping, Nonlinear Oscillations 8, 2005 | J. Karsai and J.R. Graef: Attractivity properties of oscillator equations with superlinear damping, Discrete and Continuous Dynamical Systems, 2005 | G. Röst: Neimark-Sacker bifurcation for periodic delay differential equations, Nonlinear Analysis, 2005 | G. Röst: Some applications of bifurcation formulae to the periodic map of delay differential equations, Dynamical Systems and Applications, Proc. Conf., Antalya, Turkey, 2005 | B. Bánhelyi, T. Csendes, L. Hatvani and B. Garay: A computer-assisted proof and location of chaos: the case of a forced damped pendulum equation, Proceedings of GO, 2005 | G Makay: Some notes on an almost periodic function, Acta Sci. Math. (Szeged), vol. 73, pp. 95-100, 2006 | M. Bartha and J. Terjéki: On the convergence of solutions for an equation with state-dependent delay, Differential Equations and Dynamical Systems, vol. 14, pp. 195-206, 2006 | B. Garay, L. Hatvani and J. Kolumbán: Lipot Fejér habilitated at Kolozsvár 100 years ago in stability theory, Alk. Mat. Lapok, vol. 23, pp. 163-189, 2006 | L. Hatvani and L. Székely: On the existence of small solutions of systems of linear difference equations with varying coefficients, J. Difference Equ. Appl., vol. 12, pp. 837-845, 2006 | T. Csendes, B. Bánhelyi and L. Hatvani: Towards a computer-assisted proof for chaos in a forced damped pendulum equation, J. Computational and Applied Mathematics, vol. 105, pp. 378-383, 2007 | T. Krisztin: C^1-smoothness of center manifolds for differential equations with state-dependent delay, Fields Institute Communications, 48, pp.213-226, 2006 | F. Hartung, T. Krisztin, H.-O. Walther and J. Wu: Functional differential equations with state-dependent delay: theory and applications, Handbook of Differential Equations: Ordinary Differential Equations, Vol. 3, Elsevier - North-Holland, pp. 435-545, 2006 | G. Röst: Bifurcation of periodic delay differential equations at points of 1:4 resonance, Functional Differential Equations, vol. 13, pp. 585-602, 2006 | L. Hatvani: Growth condition guaranteeing small solutions for linear oscillator with increasing elasticity coefficient, Georgian Mathematical Journal, 2007 | Röst G.: On the global attractivity controversy for a delay model of hematopoiesis, Appl. Mat. Comput. vol. 190/1, pp. 846-850, 2007 | Alexander M.E.; Bowman C.S.; Feng Zh.; Gardam M.; Moghadas S.M.; Röst G.; Wu J.; Yan P.: Emergence of drug-resistance: dynamical implications for pandemic influenza, Proc. R. Soc. London Ser. B-Biol. Sci. vol. 274, Nr. 1619, pp. 1675-1684, 2007 | Röst G.; Wu J.: Domain-decomposition method for the global dynamics of dely diffreential equations with unimodal feedback, Proc. R. Soc. London Ser. A vol. 463, pp. 2655-2669, 2007 | Móczár J.; Krisztin T.: A Harrod modell strukturális stabilitása, Szigma, 2006 | B. Bánhelyi, T. Csendes, B.M. Garay and L. Hatvani: Computer-assisted proof of chaotic behaviour of the forced damped pendulum, Folia FSN Universitatis Masarykianae Bruensis, Mathematica 16 (2007), 9-20, 2007 | B. Bánhelyi, T. Csendes, B.M. Garay and L. Hatvani: Computer-assisted proof for $\Sigma_3$ chaos in the forced damped pendulum equation, SIAM J. Appl. Dyn. Syst. 7(2008), 843-867, 2008 | N. Guglielmi and L. Hatvani: On small oscillations of mechanical systems with time dependent kinetic and potential energy, Discrete Contin. Dyn. Syst. 20(2008), 911-926., 2008 | L. Hatvani: Stability problems for the mathematical pendulum, Period. Math. Hungar. 56(2008), 71-82., 2008 | M. Bartha and J. Terjéki: Uniqueness for retarded delay differential equations without Lipschitz condition, E.J. Qualitative Theory of Diff. Equations, Proc. 8th Coll. Qual. Theory of Diff. Eq., pp. 1-6, 2008 | Alexander M.E.; Moghadas S.M.; Röst G. and Wu J.: A delay differential model for pandemic influenza with antiviral treatment, B. Mth. Biol. 70(2008), 382-397, 2008 | Moghadas S.M.; Bowman C.S.; Röst G. and Wu J.: Population-wide emergence of antiviral resistance during pandemic influenza, PLOS ONE 3:(3) 1839-p. (2008), 2008 | Röst G. and Wu J.: SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng. 5 (2008), 389-402, 2008 | Rácz É. and Karsai J.: The effect of initial patterns on competitive exclusion, Community Ecology 7(2006), 23-33, 2006 | Péics H. and Karsai J.: Existence of positive solutions of halflinear delay differential equation, J. Math. Anal. Appl. 323(2006), 1201-1212, 2006 | T. Krisztin: Global dynamics of delay differential equations, Period. Math. Hung. 56(2008), 83-95, 2008 | Karsai J.: Computer-aided study of mathematical models. CD-ROM, Univ. of Szeged, 2008 | Karsai J.: Mathematical and visualization packages: Mathematica 6. CD-ROM, Univ. of Szeged, 2008 | Karsai J.: Mathematica-aid to study impulsive system, Proceedings of the Int. Mathematica Symposium - Maastricht. http://www.ims08.org, 2008 | Szimjanovszki I., Karsai J. and Rácz É.V.: Competition for territory: the Levins model for two species. Wolfram deomstration project, http://demonstrations.wolfram.com/CompetitionFor TerritoryTheLevinsModel For, 2008 |
|
|
|
|
|
|
vissza »
|
|
|