|
Nemlineáris időfüggő feladatok numerikus megoldása és kvalitatív vizsgálata
|
súgó
nyomtatás
|
Ezen az oldalon az NKFI Elektronikus Pályázatkezelő Rendszerében nyilvánosságra hozott projektjeit tekintheti meg.
vissza »
|
|
Közleményjegyzék |
|
|
I. Faragó, S. Korotov, T. Szabó: Non-negativity preservation of the discrete nonstationary heat equation in 1D and 2D, Aplimat-Journal of Applied Mathematics, 3 (2010) 60-81., 2010 | I. Faragó, S. Korotov, T. Szabó: , On modifications of continuous and discrete maximum principles for reaction-diffusion problems, Adv. Appl. Math. Mech., 3 (2011) 109-120., 2011 | I. Faragó, A. Havasi, Z. Zlatev: Efficient implementation of stable Richardson Extrapolation Algorithms,, Computers and Mathematics with Applications, 60 (2010) 2309–2325, 2010 | I. Faragó, S. Korotov, T. Szabó: On sharpness of two-sided discrete maximum principles for reaction-diffusion problems, Aplimat-Journal of Applied Mathematics, 4 (2011) 247-254., 2011 | Z. Zlatev, I. Dimov, I. Faragó at al: Richardson Extrapolated Numerical Methods for Treatment of One-Dimensional Advection Equations, Lect. Notes Comp. Sci., Springer Verlag, 6046 (2011) 198-206., 2011 | I. Faragó, Zhilin Li, L. Vulkov. (editors): Finite Difference Methods: Theory and Applications, Special Issue of International Journal of Numerical Analysis & Modeling, V.3, N.2-3, 2011., 2011 | I. Faragó, A. Havasi, Z. Zlatev.: Richardson extrapolation combined with the sequential splitting procedure and the θ-method,, Central European Journal of Mathematics, 2012 | I. Faragó, A. Havasi, R. Horváth: , On the order of operator splitting methods for time-dependent linear systems of differential equations,, Int. J. Num. Anal. Modelling,, 2011 | Z. Zlatev, A. Havasi, I. Faragó: Influence of climatic changes on pollution levels in Hungary and its surrounding countries, Atmosphere, 2011 | I. Faragó, A. Havasi, R. Horváth: Numerical solution of the Maxwell equations in time-varying medium using Magnus expansion, Central European Journal of Mathematics, 2012 | Z. Zlatev, I. Dimov, I. Faragó at al.: Solving advection equations by applying the Crank-Nicolson scheme combined with the Richardson Extrapolation, I. Journal of Differential Equations, 2012 | I. Faragó, M. Mincsovics, I. Fekete: Notes on the basic notions in nonlinear numerical analysis, Electronic Journal of Qualitative Theory of Differential Equations, 2011 | I. Faragó, J. Karátson, S. Korotov: Discrete maximum principles for nonlinear parabolic PDE systems, IMA J. Numerical Analysis, 2012 | I. Faragó: Matrix maximum principles and their application, , Proc. ” The 7th Hungarian-Japanese Symposium on Discrete Mathamatics and its Applications” ,Kyoto University Press,, 2011 | I. Faragó, A. Havasi, Z. Zlatev: The convergence of explicit Runge-Kutta methods combined with Richardson extrapolation, "Application of Mathematics 2012", 2012 | J. Karátson: Characterizing mesh independence of Newton's method for a class of elliptic problems, SIAM J. Math. Anal., 2012 | J. Karátson, B. Kovács: Variable preconditioning in complex Hilbert space and its application to the nonlinear Schrödinger equation, Comput Math Appl 65:(3), pp. 449-459, 2013 | I. Faragó, F. Izsák, T. Szabó, A. Kriston: An IMEX scheme for reaction-diffusion equations: application for a PEM fuel cell model, Cent. Eur. J. Math.,, 2013 | I. Faragó, T. Ladics: Generalizations and error analysis of the iterative operator splitting method, Cent. Eur. J. Math., 2013 | I. Faragó: Some notes on the iterative operator splitting, J. Applied and Computational Mathematics, 2013 | I. Faragó, F. Izsák, T. Szabó: . An IMEX scheme combined with Richardson extrapolation methods for some reaction-diffusion equations, Időjárás, 2013 | I. Faragó: Convergence and stability constant of the theta-method, Application of Mathematics 2013, 2013 | I. Faragó, Z. Zlatev, et al.: Application of Richardson Extrapolation with the Crank-Nicolson scheme for multi-dimensional advection, Application of Mathematics 2013, 2013 | I. Faragó: Reliable numerical models for diffusion problems, "Supercomputer Technologies of Mathematical Modelling 2013", Editors: P. Vabisevich, V. Vasilev, Yakutsk, Russia, 2013 | I. Faragó, I. Fekete: A stability approach for reaction-diffusion problems, 8th IEEE International Symposium on Applied Computational Intelligence and Informatics ", Timisoara, Romania, 2013 | I. Faragó: Matrix maximum principles and their application, ” The 7th Hungarian-Japanese Symposium on Discrete Mathamatics and its Applications” Kyoto, New York, SIAM,, 2012 | I. Faragó, S. Korotov, T. Szabó: On continuous and discrete maximum principles for elliptic problems with the third boundary condition, Applied Mathematics and Computation,, 2013 | O. Axelsson, J. Karátson: Harmonic averages, exact difference schemes and local Green's functions in variable coefficient PDE problems, Central Eur. J. Math.11:(8) pp. 1441-1457, 2013 | I. Faragó, A. Havasi, Z. Zlatev: The convergence of diagonally implicit Runge--Kutta methods combined with Richardson extrapolation, Comp. Math: Appl., 2013 | J. Karátson, S. Korotov: Discrete maximum principles for FEM solutions of some nonlinear elliptic interface problems, International Journal of Numerical Analysis and Modelling, Vol. 6, No. 1, pp. 1-16, 2009 | J. Karátson, T. Kurics: Superlinear PCG Methods for FDM Discretizations of Convection-Diffusion Equations, Numerical Analysis and Applications, Lecture Notes Comp. Sci. No. 5434, pp. 345-352, Springer, 2009 | J. Karátson, S. Korotov: Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems, Appl. Math. (Prague), 54, No. 4, pp. 297-336, 2009 | J. Karátson, S. Korotov: An algebraic discrete maximum principle in Hilbert space with applications to nonlinear cooperative elliptic systems, SIAM J. Numer. Anal. 47, No. 4., pp. 2518-2549., 2009 | J. Karátson, T. Kurics: Some superlinear PCG methods for discretized elliptic problems, Computational Methods in Science and Engineering, Amer. Inst. Phys. Conference Proceedings, Vol. 1148, 2009; pp. 861-864, 2009 | J. Karátson: Numerical Preconditioning Methods for Elliptic PDEs, in J.W. Neuberger: Sobolev Gradients and Differential Equations, 2nd Edition, Lecture Notes Math. 1670, pp. 245-258; Springer, 2010 | J. Karátson: A discrete maximum principle for nonlinear elliptic systems with interface conditions, in: Large-scale Scientific Computing, Lecture Notes Comp. Sci. vol. 5910, pp. 580--587; Springer, Heidelberg, 2010 | J. Karátson, S. Korotov: Discrete maximum principles for FEM solutions of nonlinear elliptic systems, in: Computational Mathematics: Theory, Methods and Applications, ed. Peter G. Chareton, Computational Mathematics and Analysis Series, NOVA Science Publishers, New York, 2010 | I. Faragó, J. Karátson, S. Korotov: A discrete maximum principle for some nonlinear parabolic problems, Electr. Trans. Numer. Anal., 36 (2009-2010), pp. 149-167, 2010 | I. Faragó, R. Horváth, S. Korotov: Discrete Maximum Principles for FE Solutions of Nonstationary Diffusion-Reaction Problems with Mixed Boundary Conditions, Numerical Methods of Partial Differential Equations, 27 (2011) 702-720., 2011 | I. Faragó, Á. Havasi.: Operator splittings and their applications, Nova Science Publisher Inc., New York, 2009 | I. Faragó, A. Havasi, Z. Zlatev: Richardson-extrapolated sequential splitting and its application, J. Comp. Appl. Math., 226, 218-227., 2009 | I. Faragó: Operátorszeletelések és alkalmazásaik, Alkalmazott Matematikai Lapok, 26, 255-272., 2009 | Zs. Kocsis, Z. Ferenci, I. Faragó, A. Havasi: Operator splitting in the Lagrangian air pollution transport model FLEXPART, Időjárás, Quart. J. HMS, 113, 189-202, 2009 | I. Faragó: Discrete maximum principle for finite element parabolic models in higher dimensions, Math. Comp. Sim., 80, 1601–1611, 2010 | A. Kriston; Gy. Inzelt, I. Faragó, T. Szabó: Simulation of Simulation of transient behavior of fuel cells by using operator splitting techniques for real time applicationsns, Computers and Chemical Engineering 34, 339–348., 2010 | I. Faragó, S. Korotov, T. Szabó: Non-negativity preservation of the discrete nonstationary heat equation in 1D and 2D, Journal of Applied Mathematics, 3, 60-81., 2010 | I. Faragó, A. Havasi, Z. Zlatev: Stability of the Richardson extrapolation applied together with the theta-method, Journal of Computational and Applied Mathematics, 235 (2010) 507-522., 2010 | I. Faragó: Qualitative analysis of the Crank-Nicolson method for the heat conduction equation, Lect. Notes Comp. Sci., 5434, Springer Verlag, Berlin, 44-55., 2009 | I. Faragó: Matrix and discrete maximum principles, Lect. Notes Comp. Sci. 5910, 563-570., 2010 | Z. Zlatev, I. Farago, A. Havasi: On some stability properties of the Richardson extrapolation applied together with the theta-method, Lect. Notes Comp. Sci., Springer Verlag, 5910, 54-66., 2010 | Á. Havasi, R. Horváth, Á. Nemes, T. Szabó: Investigation of a Proton Exchange Membrane Fuel Cell Model by Parameter Fitting, Fifth Conference on Finite Difference Methods: Theory and Applications (FDM'10), Rousse University press, Lozenetz, Bulgaria, 2010. június 28., 2011 | O. Axelsson, J. Karátson: Condition number analysis for various forms of block matrix preconditioners, Electr. Trans. Numer. Anal. 36 (2009-2010), pp. 168-194., 2010 | J. Karátson: Operator preconditioning with efficient applications for nonlinear elliptic problems, Central Eur. J. Math. 10 (1), 231-249, 2012 | O. Axelsson, J. Karátson (eds.): Efficient preconditioned solution methods for elliptic partial differential equations, Bentham Science Publishers, 2011 | I. Faragó, K. Georgiev, P. G. Thomsen, Z. Zlatev (Editors): Numerical Methods and Applications, Special Issue of Applied Mathematical Modelling,, Special Issue of Applied Mathematical Modelling, V.32, N.8., 2008 | I. Faragó, Á. Havasi, Z. Zlatev (Editors): Advanced Numerical Algorithms for Large-Scale Computationsing, Special Issue of An International Journal Computers and Mathematics with Applications, V.55, N.10, 2008 | I. Faragó, J. Karátson: Gradient--finite element method for the Saint-Venant model of elasto-plastic torsion in the hardening state, International Journal of Numerical Analysis and Modeling, 5 , 206-222., 2008 | I. Antal, J. Karátson: A mesh independent superlinear algorithm for some nonlinear nonsymmetric elliptic systems, Comput. Math. Appl. 55, 2185-2196., 2008 | I. Faragó, B. Gnandt, Á. Havasi: Additive and iterative splitting methods and their numerical investigation, Computers and Mathematics with Applications, 55, 2266-2279., 2008 | I. Faragó, Á. Havasi: Relationship between vanishing splitting errors and pairwise commutativity, Applied Math. Letters, 21, 10–14., 2008 | I. Faragó: A modified iterated operator splitting method, Applied Mathematical Modelling, 32, 1542-1551., 2008 | I. Faragó, P. Thomsen, Z. Zlatev: On the additive splitting procedures and their computer realization, Applied Mathematical Modelling, 32, 1552-1569., 2008 | I. Faragó, R. Horváth: Qualitative properties of monotone linear operators, Electronic Journal of Qualitative Theory of Differential Equations, 8 , 1-15., 2008 | I. Faragó, G. Inzelt, M. Kornyik, Á. Kriston, T. Szabó: Stabilization of a numerical model through the boundary conditions for the real-time simulation of fuel cells, Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering, Springer Verlag, 489-494., 2008 | R. Horváth: Sufficient Conditions of the Discrete Maximum-Minimum Principle for Parabolic Problems on Rectangular Meshes, Comput Math Appl 55 (10), 2306--2317, 2008 | R. Horváth: On the Sign-Stability of Numerical Solutions of One-Dimensional Parabolic Problems, Appl Math Model 32 (8), 1570-1578, 2008 | J. Karátson, T. Kurics: Superlinearly convergent PCG algorithms for some nonsymmetric elliptic systems, J. Comp. Appl. Math. 212, No. 2, pp. 214-230., 2008 | O. Axelsson, J. Karátson: Mesh independent convergence rates via differential operator pairs, Large-Scale Scientific Computing (LSSC'07), Lecture Notes Comp. Sci. No. 4818, Springer, pp. 3-15., 2008 | J. Karátson: Superlinear PCG algorithms: symmetric part preconditioning and boundary conditions, Numer. Funct. Anal. 29, No. 5-6, pp. 1-22., 2008 | J. Karátson: On the Lipschitz continuity of derivatives for some scalar nonlinearities, J. Math. Anal. Appl. 346, pp. 170-176, 2008 | M. Botchev, I. Faragó, R. Horváth: Application of the operator splitting to the Maxwell equations including a source term, Appl. Num. Math., 59 , 522-541., 2009 | I. Faragó, R.Horváth, S. Korotov: Discrete maximum principles parabolic problems with general boundary conditions, Journal of Applied Mathematics, 49-56., 2009 | I. Faragó, P. Simon, Z. Zlatev (editors): Large Scale Scientific Computations, Special Issue of Journal of Computational and Applied Mathematics, V.226, N.2., 2009 | I. Faragó: Qualitative analysis of the Crank-Nicolson method for the heat conduction equation, Lect. Notes Comp. Sci., 5434, Springer, 44-55., 2009 | I. Faragó, R. Horváth: Continuous and discrete parabolic operators and their qualitative properties, IMA Numerical Analysis 29 (2009) 606-631., 2009 | R. Horváth: On the Sign-Stability of Finite Difference Solutions of Semilinear Parabolic Problems, Lect. Notes Comput Sc 5434, 305-313, 2008 | O. Axelsson, J. Karátson: Equivalent operator preconditioning for linear elliptic problems, Numerical Algorithms, 50, Issue 3, p. 297-380., 2009 | I. Antal, J. Karátson: Mesh independent superlinear convergence of an inner-outer iterative method for semilinear elliptic interface problems, J. Comput. Appl. Math. 226, pp. 190-196., 2009 |
|
|
|
|
|
|
vissza »
|
|
|