Extremális és véletlen struktúrák  részletek

súgó  nyomtatás 
vissza »

 

Projekt adatai

 
azonosító
69062
típus K
Vezető kutató Simonovits Miklós
magyar cím Extremális és véletlen struktúrák
Angol cím Extremal and random structures
magyar kulcsszavak extremális gráfok, Ramsey elmélet, véletlen gráfok, kvázi-véletlen struktúrák
angol kulcsszavak extremal graphs, Ramsey theory, random graphs, quasi random structures
megadott besorolás
Matematika (Műszaki és Természettudományok Kollégiuma)100 %
zsűri Matematika–Számítástudomány
Kutatóhely HUN-REN Rényi Alfréd Matematikai Kutatóintézet
résztvevők Elek Gábor
Füredi Zoltán
Gyori Ervin
Patkós Balázs
Szemerédi Endre
T. Sós Vera
projekt kezdete 2007-07-01
projekt vége 2011-07-31
aktuális összeg (MFt) 14.000
FTE (kutatóév egyenérték) 4.87
állapot lezárult projekt
magyar összefoglaló
A gráfelmélet legklasszikusabb területei közé tartozik az extremális gráfelmélet, a Ramsey elmélet és a véletlen gráfok elmélete. Ez a három terület szoros kapcsolatban áll egymással. Az extremális gráfelméleti kutatásokat Turán Pál kezdeményezte a Ramsey tételéből kiindulva. Ugyanez motiválta Erdőst a véletlen módszerek alkalmazására a diszkrét matematikában. Végül ez vezetett a véletlen gráfok elméletének megalkotásához, Erdős és Rényi által. Kutatási tervünkben hangsúlyozottan jelenik meg a következő problémák vizsgálata:

1. Egzakt és asszimptotikus eredmények a klasszikus extremális gráfelméletben.
2. Erdős, Kleitman és Rotschild korábbi vonatkozó eredményeinek kiterjesztése.
3. A klasszikus eredmények kiterjesztése hipergráfokra, digráfokra és multigráfokra.
4. Tisztán véletlen jelenségek (véletlen struktúrák, Ramsey tételek véletlen struktúrákra, mint pl. Rödl-Rucinsky elmélet), véletlenségi hierarchiák (Simonovits-T.Sós).
5. A stabilitási módszer alkalmazása arra, hogy nagy paraméterek esetén asszimptotikus struktúrális tételek segítségével egzakt eredményeket nyerjünk.
6. Bizonyos diszkrét matematikai eredmények algebrai aspektusának vizsgálata, kapcsolat gráfok és spektrumuk között. Olyan limesztételek vizsgálata, ahol a diszkrét problémák folytonos problémákkal közelíthetők végtelen struktúrák véges struktúrákkal való approximációjával.
7. Módszereink alkalmazása az elméleti számítástudományban.
angol összefoglaló
Some of the most classical parts of graph theory are the Theory of Extremal
graphs, Ramsey theory and Theory of Random Graphs. These three
fields are very strongly related to each other. Extremal graph theory was initiated
by Paul Tur´an and motivated by the Ramsey Theorem. In connection
with these, Erd½os initiated the application of random methods in Discrete
Mathematics. This in turn lead to the investigation of the Evolution of
Random Graphs, a theory initiated by Erd½os and R´enyi.
In our research plan we would like to emphasize that we wish to investigate
1. both exact and asymptotic results in classical extremal graph theory,
2. Extend some of our earlier results in the field initiated by Erd½os, Kleitman
and Rothschild,
3. Extend classical results to hypergraphs, digraphs and multigraphs.
4. Investigate purely random phenomena (random structures, Ramsey
theorems for random structures, (see R¨odl-Rucinski theory), hierarchy
of randomness (Simonovits and T. S´os)
5. Investigate the application of the stability method to obtain exact
results (for large parameters) from asymptotic structural results/ stability
theorems.
6. Investigate algebraic aspects of some discrete mathematical results,
connections between graphs and their spectra, and limit theorems
when we “pass” from discrete to continuous, when we consider limit
objects of finite strictures.
7. Investigate the application of our methods in theoretical computer
science.





 

Zárójelentés

 
kutatási eredmények (magyarul)
Résztvevők: T. Sós Vera, akadémikus, Szemerédi Endre, akadémikus, Füredi Zoltán akadémikus, Győri Ervin, a tudományok doktora, Elek Gábor a tudományok doktora, és témavezetőként Simonovits Miklós (akadémikus). Menetközben csatlakozott a pályázathoz Patkós Balázs. Itt, a rövid beszámolóban csak a legfontosabb témákat említem, Klasszikus Extremális és Ramsey problémák megoldása, ill. ezekkel rokon problémák. A Szemerédi Regularitási Lemma alkalmazásai, az extremális és Ramsey típusú kérdések kapcsolata, ezek kapcsolata a kvázivéletlenséggel, "tulajdonság-teszteléssel". Az extrém gráfelmélettel szoros kapcsolatban álló Erdős-Kleitman-Rothschild típusú tételek. A gráflimesz vizsgálata, alkalmazásai Hasonlóságok és különbségek a sűrű és ritka gráfok limesz-elméletében. ,,Sporadikus kérdések,'' pl. algebrai és geometriai alkalmazások.
kutatási eredmények (angolul)
Project leader: Miklós Simonovits Participants: Vera T. Sós , Endre Szemerédi, Zoltán Füredi, Ervin Győri, Gábor Elek. Balázs Patkós joined our group later. Here I have space only to mention the topics breafly. We were interested primarily in the connection, similarities and differences between deterministic and randomlike structures. Large part of our research was related to the Szemerédi Regularity Lemma and its various versions, and the applications of it, among others, in classical extremal graph and hypergraph problems. We also investigated the application of this lemma in quasi-randomness, property testing, and other related fields. We investigated the graph-limit theory, both for dense and veryy sparse graph sequences. Beside these, we investigated several ``Sporadic question,'' e.g. applications of our methods in algebra and geometry.
a zárójelentés teljes szövege https://www.otka-palyazat.hu/download.php?type=zarobeszamolo&projektid=69062
döntés eredménye
igen





 

Közleményjegyzék

 
Balister, P. N.; Győri, E.; Lehel, J.; Schelp, R. H.:: Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007), no. 1, 237--250 (electronic)., 2007
Balister, P. N.; Győri, E.; Schelp, R. H: Coloring vertices and edges of a graph by nonempty subsets of a set, European J. Combin. 32 (2011), no. 4, 533--537,, 2011
Balogh, József; Bollobás, Béla; Simonovits, Miklós: The fine structure of octahedron-free graphs, J. Combin. Theory Ser. B 101 (2011), no. 2, 67--84,, 2011
Blokhuis, A.; Brouwer, A. E.; Chowdhury, A.; Frankl, P.; Mussche, T.; Patkós, B.; Szőnyi, T: A Hilton-Milner theorem for vector spaces, Electron. J. Combin. 17 (2010), no. 1, Research Paper 71, 12 pp., 2010
A. Blokhuis, J. Doumen, Z. Füredi, and H. Wilbrink: Embedding posets in posets of bounded outdegree, to appear, 2012
Chowdhury, Ameera; Patkós, Balázs: Shadows and intersections in vector spaces, J. Combin. Theory Ser. A 117 (2010), no. 8, 1095--1106., 2010
B. Csaba, I. Levitt, J. Nagy-Gyorgy, and E. Szemeredi: Tight bounds for embedding bounded degreee trees, Bolyai Society Mathematical Studies, X.(2010), Fete of Combinatorics, pp. 1-44., 2010
Eaton, Nancy; Füredi, Zoltán; Kostochka, Alexandr V.; Skokan, Jozef: Tree representations of graphs, European J. Combin. 28 (2007), no. 4, 1087--1098., 2007
Elek, Gábor: On limits of finite graphs, Combinatorica 27 (2007), no. 4, 503--507., 2007
Elek, Gábor: The combinatorial cost, Enseign. Math. (2) 53 (2007), no. 3-4, 225--235., 2007
Elek, Gábor: On the limit of large girth graph sequences, Combinatorica 30 (2010), no. 5, 553--563., 2010
Flandrin, Evelyne; Győri, Ervin; Li, Hao; Shu, Jinlong: Cyclability in $k$-connected $K_{1,4}$-free graphs, Discrete Math. 310 (2010), no. 20, 2735--2741., 2010
Füredi, Zoltán: Covering a triangle with positive and negative homothetic copies, Discrete Comput. Geom. 38 (2007), no. 2, 273--288., 2007
Z. Füredi and L. Özkahya: On even-cycle-free subgraphs of the hypercube, J. Combin. Theory Ser. A 118 (2011), no. 6, 1816--1819, 2011
Gerbner, Dániel; Keszegh, Balázs; Lemons, Nathan; Palmer, Cory; Pálvölgyi, Dömötör; Patkós, Balázs: Polychromatic colorings of arbitrary rectangular partitions, Discrete Math. 310 (2010), no. 1, 21--30., 2010
Gerbner, D., Nathan Lemons, Cory Palmer, Balázs Patkós, Vajk Szécsi: Almost intersecting families of sets, submitted, 2011
Gerbner, D., Nathan Lemons, Cory Palmer, Balázs Patkós, Vajk Szécsi: Cross-Sperner families, Submitted, 2011
Gerbner, Dániel; Pálvölgyi, Dömötör; Patkós, Balázs; Wiener, Gábor: Finding the maximum and minimum elements with one lie, Discrete Appl. Math. 158 (2010), no. 9, 988--995., 2010
Gerbner, Dániel; Patkós, Balázs: $l$-chain profile vectors, SIAM J. Discrete Math. 22 (2008), no. 1, 185--193., 2009
Gerbner, Dániel; Patkós, Balázs: Profile vectors in the lattice of subspaces, Discrete Math. 309 (2009), no. 9, 2861--2869., 2009
Gyárfás, András; Ruszinkó, Miklós; Sárközy, Gábor N.; Szemerédi, Endre: Tripartite Ramsey numbers for paths, J. Graph Theory 55 (2007), no. 2, 164--174., 2007
Gyárfás, András; Ruszinkó, Miklós; Sárközy, Gábor N.; Szemerédi, Endre: Three-color Ramsey numbers for paths, Combinatorica 27 (2007), no. 1, 35--69., 2007
Gyárfás, András; Ruszinkó, Miklós; Sárközy, Gábor N.; Szemerédi, Endre: Corrigendum: "Three-color Ramsey numbers for paths'', [Combinatorica 27 (2007), no. 1, 35--69; Combinatorica 28 (2008), no. 4, 499--502., 2008
Jan Hladky, Janos Komlos, Diana Piguet, Miklos Simonovits, Maya Stein, and Endre Szemeredi: An approximate version of the Loebl- Komlos-Sos Conjecture II., in manuscript, 2011
Kohayakawa, Yoshiharu; Rödl, Vojtech; Schacht, Mathias; Szemerédi, Endre: Sparse partition universal graphs for graphs of bounded degree, Adv. Math. 226 (2011), no. 6, 5041--5065., 2011
Kohayakawa, Yoshi, Simonovits, Miklós, Skokan, Jozef: The three-coloured Ramsey-number of odd cycles, submitted, 2011
Kohayakawa, Yoshi, Simonovits, Miklós, Skokan, Jozef: Stability of the Ramsey Numbers for Cycles, manuscript, 2011
Krivelevich, Michael; Patkós, Balázs: Equitable coloring of random graphs, Random Structures Algorithms 35 (2009), no. 1, 83--99., 2009
Patkós, Balázs: On randomly generated non-trivially intersecting hypergraphs, Electron. J. Combin. 17 (2010), no. 1, Research Paper 26, 20 pp., 2010
Patkós, Balázs: The distance of $\cal F$F-free hypergraphs, Studia Sci. Math. Hungar. 46 (2009), no. 2, 275--286., 2009
Patkós, Balázs: $l$-trace $k$-Sperner families of sets, J. Combin. Theory Ser. A 116 (2009), no. 5, 1047--1055., 2009
Patkós, Balázs: Traces of uniform families of sets, Electron. J. Combin. 16 (2009), no. 1, Note 8, 5 pp., 2009
Patkós, Balázs; Tichler, Krisztián; Wiener, Gábor: Inclusionwise minimal completely separating systems, J. Stat. Theory Pract. 3 (2009), no. 2, 455--462, Database Expansion Item, 2009
Sarmad Abbasi, Imdadullah Khan, Gábor Sárközy, and Endre Szemerédi: A de-regularized" proof of the El-Zahar Conjecture for Large Graphs, submitted to Journal of Combinatorial Theory B., 2011
Szemerédi, Endre: An old new proof of Roth's theorem, dditive combinatorics, 51--54, CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, 2007., 2007
Füredi, Zoltán; Kantor, Ida: List colorings with distinct list sizes, the case of complete bipartite graphs. European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009), 323--327, Electron. Notes Discrete Math., 34, Elsevier Sci. B. V., Amsterdam, 2009. 05C78 (05C15), 2009
Füredi, Zoltán; Kantor, Ida; A. Monti, and B. Sinaimeri: On reverse free codes and permutations, SIAM J. Discrete Math. 24 (2010), no. 3, 964--978., 2010
Füredi, Zoltán; Lehel, Jenõ: Tight embeddings of partial quadrilateral packings, J. Combin. Theory Ser. A 117 (2010), no. 4, 466--474., 2010
Füredi, Zoltán; Özkahya, Lale: n even-cycle-free subgraphs of the hypercube. European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009), 515--517,, Electron. Notes Discrete Math., 34, Elsevier Sci. B. V., Amsterdam, 2009., 2009
Füredi, Zoltán; Özkahya, Lale: On even-cycle-free subgraphs of the hypercube, European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009), 515--517, Electron. Notes Discrete Math., 34, Elsevier Sci. B. V., Amsterdam, 2009., 2009
Füredi, Zoltán; Özkahya, Lale: Unavoidable subhypergraphs: $\bold a$-clusters. European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009), 63--67, Electron. Notes Discrete Math., 34, Elsevier Sci. B. V., Amsterdam, 2009. 05C65, 2009
Füredi, Zoltán and J. Wetzel: Covers for closed arcs of length two, Periodica Math. Hungar. (to appear), 2010
Füredi, Zoltán and L. Özkahya: On 14-cycle-free subgraphs of the hypercube, Combinatorics, Computing and Probability, 18 (2009), no. 5, 725--729., 2009
Füredi, Zoltán and L. Özkahya: Unavoidable subhypergraphs: $\bold a$-clusters. {\it European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009)}, 63--67, Electron. Notes Discrete Math., 34, Elsevier Sci. B. V., Amsterdam, 2009., 2009
Füredi, Zoltán and L. Özkahya: Unavoidable subhypergraphs: $\bold a$-clusters, J. Combin. Th., Ser. A, accepted, 2010
Füredi, Zoltán; Sali, Attila: Partition critical hypergraphs. European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009), 573--577, Electron. Notes Discrete Math., 34, Elsevier Sci. B. V., Amsterdam, 2009., 2009
Gerbner, D., Nathan Lemons, Cory Palmer, Balázs Patkós, Vajk Szécsi: Almost intersecting families of sets, submitted, 2010
Gerbner, D., Nathan Lemons, Cory Palmer, Balázs Patkós, Vajk Szécsi: Cross-Sperner families, submitted, 2010
Gyárfás, András; Sárközy, Gábor N.; Szemerédi, Endre: Stability of the path-path Ramsey number, Discrete Math. 309 (2009), no. 13, 4590--4595., 2009
Gyárfás, András; Sárközy, Gábor N.; Szemerédi, Endre: Long monochromatic Berge cycles in colored 4-uniform hypergraphs, Graphs Combin. 26 (2010), no. 1, 71--76., 2010
Gyárfás, Ruszinkó, Sárközy, Szemerédi: Partitioning 3-colored complete graphs into three monochromatic cycles, Electron. J. Combin. 18 (2011), no. 1, Paper 53, 16 pp,, 2011
Gyárfás, András; Sárközy, Gábor N.; Szemerédi, Endre: Monochromatic Hamiltonian 3-tight Berge cycles in 2-colored 4-uniform hypergraphs, J. Graph Theory 63 (2010), no. 4, 288--299. 05C45 (05C65), 2010
Gyõri, Ervin; Lemons, Nathan: Hypergraphs with no odd cycle of given length. European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009), 359--362, Electron. Notes Discrete Math., 34, Elsevier Sci. B. V., Amsterdam, 2009. 05C65 (05C38), 2009
Gyõri, Ervin; Palmer, Cory: A new type of edge-derived vertex coloring, Discrete Math. 309 (2009), no. 22, 6344--6352. 05C15, 2009
Jamshed, Asif, Szemerédi, Endre: Proof of the Pósa-Seymour conjecture, Submitted to Annals of Combinatorics, 2011
H.A. Kierstead, A.V. Kostochka, M Mydlarz, E Szemerédi: A fast algorithm for equitable coloring Combinatorica, Submitted, 2010
Levitt, Ian; Sárközy, Gábor N.; Szemerédi, Endre: How to avoid using the regularity lemma: Pósa's conjecture revisited, Discrete Math. 310 (2010), no. 3, 630--641., 2010
Luczak, T., Skokan, J., Simonovits, Miklós: ??, to appear in Journal of Graph Theory, 2010
Rödl, Vojtech; Ruciñski, Andrzej; Szemerédi, Endre: Perfect matchings in large uniform hypergraphs with large minimum collective degree, J. Combin. Theory Ser. A 116 (2009), no. 3, 613--636., 2009
Rödl, Vojtech; Ruciñski, Andrzej; Szemerédi, Endre: Dirac-type conditions for hamiltonian paths and cycles in 3-uniform hypergraphs, Advances in Mathematics, 227 (2011), no. 3, 1225--1299., 2011
Simonovits, M: Personal reminiscences, Gyuri Elekes, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 52 (2009), 25--30., 2009
Simonovits, Miklós and Szabó, Endre: Elekes Gyuri és az illeszkedések, Mat. Lapok, 2009/2, 18--34., 2009
Simonovits, Miklós and Szabó, Endre: Gyuri Elekes and the incidences, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 52 (2009), 53--73 (2010), 2009
Elek, Gábor; Lippner, Gábor: Sofic equivalence relations, J. Funct. Anal. 258 (2010), no. 5, 1692--1708., 2010
Elek, Gábor: Parameter testing in bounded degree graphs of subexponential growth, Random Structures and Algorithms, vol 37/2 pp 248-270., 2010
Elekes, György; Simonovits, Miklós; Szabó, Endre: A combinatorial distinction between unit circles and straight lines: how many coincidences can they have?, Combin. Probab. Comput. 18 (2009), no. 5, 691--705., 2009
Füredi, Zoltán; Gyõri, Ervin; Pach, János; Sali, Attila: Guest editors' foreword [Special issue: Simonovits '06], Discrete Math. 308 (2008), no. 19, 4305. 05-06, 2008
T.H. Chan, E. Győri, A. Sárközy: On a problem of Erdős on integers no one of which divides the product of $k$ others, European J. Combin. 31 (2010), no. 1, 260--269., 2010
Kohayakawa, Yoshihary; Simonovits, Miklós; Skokan, Jozef: The $3$-colored Ramsey Number of Odd Cycles, accepted in JCTB, 2009
Balogh, József; Bollobás, Béla; Simonovits, Miklós: The typical structure of graphs without given excluded subgraphs, Random Structures Algorithms 34 (2009), no. 3, 305--318., 2009
Elekes György; Simonovits, Miklós; Szabó, Endre: On the number of high multiplicity points for 1-parameter families of curves, Random Structures and Algorithms, 2009., 2009
Simonovits, Miklós; Szabó, Endre: Elekes Gyuri és az incidenciák, Matematikai Lapok, elfogadva (2009), 2009
C. Borgs, J. Chayes, L. Lovász, Vera T. Sós, K. Vesztergombi: Counting graph homomorphisms. Topics in discrete mathematics, lgorithms Combin, 36, Springer, Berlin (2008) 315-371 with Ch.Borgs, J.Chayes, L. Lovász, K. Vesztergombi, 2008
Balogh, J. Bollobás, B; Saks, M.; Sós, Vera: The unlabelled speed of a hereditary graph property with, J Comb Theory B 99 (2009) n 1 p9-19, 2009
Sós, Vera; C. Borgs, J.Chayes, L. Lovász, K. Vesztergombi: Convergent sequences of dense graphs II H-colorings, Statistical Phisics and Quotients (Submitted), 2009
Borgs, C; Chayes, J; Lovász, L; Sós, Vera; Vesztergombi, K.: Limits of randomly growing graph sequences, European Journal of Combinatorics (to appear), 2011
Szemerédi, Endre; Rödll, Vojtech; Ruciski, Andrzej: Perfect matchings in large uniform hypergraphs with large minimum collective degree, J. Combin. Theory Ser. A 116 (2009), no. 3, 613--636., 2009
Szemerédi, Endre I Levitt, G.N. Sárközy: How to avoid using the Regularity Lemma: Pósa's conjecture revisited Discrete Mathematics, Discrete Math. 310 (2010), no. 3, 630--641., 2010
Gyárfás, A.; Sárközy, G.N; Szemerédi, Endre: Stability of the path-path Ramsey number, Discrete Mathematics, 309 (2009), no. 13, pp. 4590-4595, 2009
Szemerédi, Endre; Gyárfás, András; Sárközy, Gábor: "Long monochromatic Berge cycles in colored 4-unform hypergraphs.", Graphs Combin. 26 (2010), no. 1, 71--76., 2010
Szemerédi, Endre; Gyárfás, András; Sárközy, G.N.: "Monochromatic matchings in the shadow graph of almost complete hypergraphs.", Ann. Comb. 14 (2010), no. 2, 245--249., 2010
Abért, Miklós, Gábor Elek: Dynamical properties of profinite actions, to appear in Ergodic Theory and Dynamical Systems (2011) (see also ArXiv:1005.3188v3), 2011
A. Blokhuis, J. Doumen, Z. Füredi, and H. Wilbrink: Embedding posets in posets of bounded outdegree, to appear, 2010
Borgs, Christian, Chayes, Jennifer, Lovász, László, Sós, Vera, Vesztergombi, Kati: Limits of randomly growing graph sequences, European Journal of Combinatorics, 2010
Chan, Tsz Ho; Gyõri, Ervin; Sárközy, András: On a problem of Erdõs on integers, none of which divides the product of $k$ others, European Journal of Combinatorics, 31 (2010), no. 1, 260--269., 2010
Csaba, Béla, Jamshed, Asif, Szemerédi, Endre: Embedding spanning trees, submitted to CPC, 2011
Gábor Elek: Connes Embeddings and von Neumann regular closures of group algebras, submitted, 2010
Elek, Gábor; Lippner, Gábor: Borel oracles. An analytical approach to constant-time algorithms, Proc. Amer. Math. Soc. 138 (2010), no. 8, 2939--2947. 03E15 (05Cxx 68R10), 2010
Elek Gábor: L2-spectral invariants and convergent sequences of finite graphs., Journal of Functional Analysis (254) no. 10 (2008) 2667-2689., 2008
Gábor Elek, Balázs Szegedy: A measure-theoretic approach to the theory of dense hypergraphs, közlésre benyújtva, 2009
Balister, P. N.; Gyõri, E.; Lehel, J.; Schelp, R. H.: Connected graphs without long paths, Discrete Math. 308 (2008), no. 19, 4487--4494., 2008
Bollobás, Béla; Gyõri, Ervin: Pentagons vs. triangles, Discrete Math. 308 (2008), no. 19, 4332--4336., 2008
Ceccherini-Silberstein, Tullio; Elek, Gábor: Minimal topological actions do not determine the measurable orbit equivalence class, Groups Geom. Dyn. 2 (2008), no. 2, 139--163., 2008
Elek, Gábor: Weak convergence of finite graphs, integrated density of states and a Cheeger type inequality, J. Combin. Theory Ser. B 98 (2008), no. 1, 62--68., 2008
Füredi, Zoltán; Mubayi, Dhruv; Pikhurko, Oleg: Quadruple systems with independent neighborhoods, J. Combin. Theory Ser. A 115 (2008), no. 8, 1552--1560., 2008
Füredi, Zoltán; Gyárfás, András; Sárközy, Gábor N.; Selkow, Stanley: Inequalities for the first-fit chromatic number, J. Graph Theory 59 (2008), no. 1, 75--88., 2008
Füredi, Z.; Kang, J.-H.: Covering the $n$-space by convex bodies and its chromatic number., Discrete Math. 308 (2008), no. 19, 4495--4500., 2008
Füredi, Zoltán; Ruszinkó, Miklós: Large convex cones in hypercubes, Discrete Appl. Math. 156 (2008), no. 9, 1536--1541., 2008
Gyõri, Ervin; Horák, Mirko; Palmer, Cory; Wozniak, Mariusz: General neighbour-distinguishing index of a graph, Discrete Math. 308 (2008), no. 5-6, 827--831., 2008
Borgs, C.; Chayes, J. T.; Lovász, L.; Sós, V. T.; Vesztergombi, K.: Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing, Adv. Math. 219 (2008), no. 6, 1801--1851., 2008
Artstein-Avidan, Shiri; Fraenkel, Aviezri S.; Sós, Vera T.: A two-parameter family of an extension of Beatty sequences, Discrete Math. 308 (2008), no. 20, 4578--4588., 2008
Lovász, László; Sós, Vera T.: Generalized quasirandom graphs, J. Combin. Theory Ser. B 98 (2008), no. 1, 146--163., 2008
Luczak, Tomasz; Simonovits, Miklós: On the minimum degree forcing $F$-free graphs to be (nearly) bipartite, Discrete Math. 308 (2008), no. 17, 3998--4002., 2008
Gyárfás, András; Sárközy, Gábor N.; Szemerédi, Endre: The Ramsey number of diamond-matchings and loose cycles in hypergraphs, Electron. J. Combin. 15 (2008), no. 1, Research Paper 126, 14 pp., 2008
Martin, Ryan; Szemerédi, Endre: Quadripartite version of the Hajnal-Szemerédi theorem, Discrete Math. 308 (2008), no. 19, 4337--4360., 2008
Rödl, Vojtìch; Ruciñski, Andrzej; Szemerédi, Endre: An approximate Dirac-type theorem for $k$-uniform hypergraphs, Combinatorica 28 (2008), no. 2, 229--260., 2008
Nguyen, Hoi H.; Szemerédi, Endre; Vu, Van H.: Subset sums modulo a prime, Acta Arith. 131 (2008), no. 4, 303--316., 2008
J. Balogh, B. Bollobás, M. Saks and V. T. Sós: The unlabelled speed of a hereditary graph property, J Combin Theory B, to appear, 2009
A. Kostochka, M. Myplarz, H. Kierstead and Enrde Szemerédi: A fast algorithm for equitable colouring, Combinatorica 30 (2010), no. 2, 217--224., 2010
V. Rödl, A. Rucinski, M. Schacht, E. Szemerédi: A note on perfect matchings in a uniform hypergraph, with large minimum codegree, Comment. Math. Univ. Carolin. 49 (2008), no. 4, 633--636., 2008





 

Projekt eseményei

 
2010-03-11 16:18:54
Résztvevők változása




vissza »