|
Dinamikai rendszerek sztohasztikus tulajdonsagai es ezek paraméter érzékenysége
|
súgó
nyomtatás
|
Ezen az oldalon az NKFI Elektronikus Pályázatkezelő Rendszerében nyilvánosságra hozott projektjeit tekintheti meg.
vissza »
|
|
Közleményjegyzék |
|
|
Bárány B, Ferguson A, Simon K: Slicing the Sierpiński gasket, Nonlinearity 25: 1753-1770, 2012 | Bárány Balázs: Iterated function systems with non-distinct fixed points, Journal of Mathematical Analysis and Applications, Vol. 383 Issue 1, 244-258, 2011 | Bárány Balázs: Dimension of the generalized 4-corner set and its projections, Ergodic Theory and Dynamical Systems, DOI: 10.1017/S014338571100023X, 2011 | Zs. Pajor-Gyulai, D. Szász:: Energy transfer and joint diffusion, J. Stat. Physics, 146:1001-1025, 2012, 2012 | P Bálint, N Chernov, D. Dolgopyat:: Limit theorems for dispersing billiards with cusps;, Communications in Mathematical Physics 308, 479-510, 2011 | M. Rams, K. Simon: THE DIMENSIONS OF PROJECTIONS OF FRACTAL PERCOLATIONS, http://www.math.bme.hu/~simonk/papers/index.html, 2012 | A. Grigo, K. Khanin, D. Szász: Mixing rates of particle systems with energy exchange, Nonlinearity, 25:2349-2372, 2011 | Zs. Pajor-Gyulai, D. Szász: Weak convergence of random walks, conditioned to stay away from small sets, Studia Sci. Math. Hung. (submitted), 2012 | Péter Bálint, Imre Péter Tóth: Example for Exponential Growth of Complexity in a Finite Horizon Multi-dimensional Dispersing Billiard, Nonlinearity 25, 1275-1297, 2012 | Péter Bálint, Gábor Borbély, András Némedy Varga: Statistical properties of the system of two falling balls, Chaos 22, Paper 026104, 2012 | P. Nándori, D. Szász, T. Varjú: A central limit theorem for time-dependent dynamical systems, Journal of Statistical Physics, 146, 6: 1213-1220, 2012 | P. Nándori, D. Szász: Lorentz Process with shrinking holes in a wall, Chaos 22 Paper 026115, 2012 | B. Bárány: Iterated Function Systems with Non-Distinct Fixed Points, J. Math. Anal. & Appl. 383 No. 1 244-258, 2011 | B. Bárány: Dimension of the generalized 4-corner set and its projections, Erg. Th. & Dyn. Sys. 32, 1190-1215., 2012 | Bálint P, Tóth IP: Exponential Decay of Correaltions in Multidimensional Dispersing Billiards, Annales Henri Poincaré 9: 1309-1369., 2008 | Pajor-Gyulai Zs, Szász D, Tóth IP: Billiard Models and Energy Transfer., Proc. of International Congress on Math. Physics, Prague, World Scientific, 2009 | Bálint P, Melbourne I: Decay of correlations and invariance principles for dispersing billiards with cusps, and related planar billiard flows, Journal of Statistical Physics 133: 435-447., 2008 | Bálint P, Lin KK, Young LS: Ergodicity and Energy Distributions for some Boundary Driven Integrable Hamiltonian Chains, Communications in Mathematical Physics 294: 199–228, 2010 | Móra P, Simon K, Solomyak B: The Lebesgue measure of the algebraic difference of two random Cantor sets., Indagationes Mathematicae 20: 131–149, 2009 | Bárány B, Pollicott M, Simon K: Stationary measures for projective transformations: The Blackwell and Furstenberg measures, Journal od Statistical Physics 148: 393-421, 2012 | Szász D,: Some challenges in the theory of (semi)-dispersing billiards, Nonlinearity, invited paper, 21:187-193, 2008 | Szász D,: Algebro-Geometric Methods for Hard Ball Systems, Discrete and Continuous Dyn. Systems, Ser. A. 22:427-443,, 2008 | Dolgopyat D, Szász D, Varjú T: Recurrence Properties of the Planar Lorentz Process., Duke Math. Journal. 142: 241-281, 2008 | Dolgopyat D, Szász D, Varjú T: Limit Theorems for Perturbed Lorentz Processe, Duke Math. Journal. 148: 459-499, 2009 | Bachurin P, Bálint P , Tóth IP: Local ergodicity for systems with growth properties including multi-dimensional dispersing billiards, Israel Journal of Mathematics 167: 155-176., 2008 | Paulin D, Szász D: Locally Perturbed Random Walks with Unbounded Jumps, J. Stat. Physics 141: 1116-1130,, 2010 | Pajor-Gyulai Zs, Szász D: Perturbation approach to scaled type Markov renewal processes with infinite mean, manuscript, 2010 | Pajor-Gyulai Zs, Szász D: Weak convergence of random walks, conditioned to stay away, Studia Math. Sci. Hung. 50: 122-128, 2013 | Bálint P, Halász M, Hernández-Tahuilán J, Sanders DP: Chaos and stability in a two-parameter family of convex billiard tables, Nonlinearity 24: 1499-1521, 2011 | Rudas A, Toth IP: Entropy and Hausdorff Dimension in Random Growing Trees, Stoch. Dyn. 13: 1250010, 2013 | Dekking M, Simon K, Szekely B: The algebraic difference of two random Cantor sets: The Larsson's family., Annals of Probability 39: 549-586, 2011 | Manning A, Simon K,: Dimension of slices through the Sierpinski carpet, Trans. Amer. Math. Soc. 365: 213–250, 2013 | Rams M, Simon K: Projections of Fractal Percolations, Ergodic Theory & Dynamical Systems (közlésre elfogadva), 2011 | Nándori P: Number of distinct sites visited by a random walk with internal states, Probab. Theory Related Fields 150: 373–403, 2011 | Nándori P: Recurrence properties of a special type of Heavy-Tailed Random Walk, J. of Statistical Physics 142: 342-355, 2011 | Bárány B, Persson T: The Absolute Continuity of the Invariant Measure of Random Iterated Function Systems with Overlaps, Fund. Math. 210: 47-62, 2010 | Bárány B: On the Hausdorff Dimension of a Family of Self-Similar Sets with Complicated Overlaps, Fund. Math. 206: 49-59, 2009 | Bárány B: Sub-Additive Pressure for IFS with Triangular Maps, Bull. Pol. Acad. Sci. Math. 57: 263–278, 2009 | Bárány B: Dimension of the generalized 4-corner set and its projections, Ergodic Theory Dynam. Systems 32: 1190–1215, 2012 | Pajor-Gyulai Zs, Szász D: Energy transfer and joint diffusion, J. Stat. Physics 146: 1001-1025, 2012 | Bálint P, Chernov N, Dolgopyat D: Limit theorems for dispersing billiards with cusps, Communications in Mathematical Physics 308: 479-510, 2011 | Rams M, Simon K: THE DIMENSIONS OF PROJECTIONS OF FRACTAL PERCOLATIONS, J. Stat. Phys. (közlésre elfogadva), 2012 | Grigo A, Khanin K, Szász D: Mixing rates of particle systems with energy exchange, Nonlinearity 25: 2349-2372, 2011 | Bálint P, Tóth IP: Example for Exponential Growth of Complexity in a Finite Horizon Multi-dimensional Dispersing Billiard, Nonlinearity 25: 1275-1297, 2012 | Bálint P, Borbély G, Némedy Varga A: Statistical properties of the system of two falling balls, Chaos 22: 026104, 2012 | Nándori P, Szász D, Varjú T: A central limit theorem for time-dependent dynamical systems, Journal of Statistical Physics, 146, 6: 1213-1220, 2012 | Nándori P, Szász D: Lorentz Process with shrinking holes in a wall, Chaos 22: 026115, 2012 | Bárány B: Iterated Function Systems with Non-Distinct Fixed Points, J. Math. Anal. & Appl. 383: 244-258, 2011 | Pavel Bachurin, Péter Bálint , Imre Péter Tóth: Local ergodicity for systems with growth properties including multi-dimensional dispersing billiards, Israel Journal of Mathematics, 167 (2008) 155-176., 2008 | D. Paulin, D. Szász: Locally Perturbed Random Walks with Unbounded Jumps, J. Stat. Physics, 141: 1116-1130,, 2010 | Zs. Pajor-Gyulai, D. Szász: Perturbation approach to scaled type Markov renewal processes with infinite mean, manuscript, 2010 | Zs. Pajor-Gyulai, D. Szász: Weak convergence of random walks, conditioned to stay away, Studia Math. Sci. Hung. 50, 122-128, 2013 | ab: ab, ab, 2011 | Péter Bálint, Miklós Halász, Jorge Hernández-Tahuilán, David P. Sanders: Chaos and stability in a two-parameter family of convex billiard tables, Nonlinearity 24, 1499-1521, 2011 | Rudas A, Toth IP: Entropy and Hausdorff Dimension in Random Growing Trees, submitted, 2011 | M. Dekking, K. Simon, B. Szekely: The algebraic difference of two random Cantor sets: The Larsson's family., Annals of Probability, Vol 39 549-586., 2011 | A. Manning, K. Simon,: Dimension of slices through the Sierpinski carpet, Accepted by the Transactions of the AMS, 2009 | Michal Rams, Karoly Simon,: Projections of Fractal Percolations, preprint, 2011 | Péter Nándori: Number of distinct sites visited by a random walk with internal states, Probability Theory and Related Fields, 2011 | Péter Nándori: Recurrence properties of a special type of Heavy-Tailed Random Walk, J. of Statistical Physics, Volume 142 (Number 2), 342-355, 2011 | Balázs Bárány , Tomas Persson:: The Absolute Continuity of the Invariant Measure of Random Iterated Function Systems with Overlaps, Fundamenta Mathematicae, 210 No. 1, 47-62, 2010 | B. Bárány: On the Hausdorff Dimension of a Family of Self-Similar Sets with Complicated Overlaps, Fundamenta Mathematicae, 206 49-59, 2009 | B. Bárány: Sub-Additive Pressure for IFS with Triangular Maps, Bulletin of the Pol. Ac. of Sci. Math., 2009 | abab: ab, ab, 2011 | ab: ab, ab, 2011 | Dolgopyat D, D. Szász, T. Varjú: Recurrence Properties of the Planar Lorentz Process., Duke Math. Journal. 142: 241-281, 2008 | D. Dolgopyat, D. Szász, T. Varjú: Limit Theorems for Perturbed Lorentz Processe, Duke Math. Journal. 148: 459-499, 2009 | Péter Bálint , Imre Péter Tóth: Exponential Decay of Correaltions in Multidimensional Dispersing Billiards, Annales Henri Poincaré, 9 (2008) 1309-1369., 2008 | Zs. Pajor-Gyulai, D. Szász, I. P. Tóth: Billiard Models and Energy Transfer., Proc. of International Congress on Math. Physics, Prague, World Scientific, 2009 | Péter Bálint , Ian Melbourne: Decay of correlations and invariance principles for dispersing billiards with cusps, and related planar billiard flows, Journal of Statistical Physics, 133 (2008) 435-447., 2008 | Péter Bálint , Kevin K. Lin, Lai-Sang Young: Ergodicity and Energy Distributions for some Boundary Driven Integrable Hamiltonian Chains, Communications in Mathematical Physics,, 2009 | Péter Móra, Károly Simon, Boris Solomyak: The Lebesgue measure of the algebraic difference of two random Cantor sets., Indagationes Mathematicae, megjelenés alatt, 2009 | Balázs Bárány, Mark Pollicott, Károly Simon: Stationary measures for projective transformations: The Blackwell and Furstebnberg measures, Journal od Statistical Physics val. 48, 393-421, 2012 | ab: ab, ab, 2009 | Michel Dekking,Károly Simon, Balázs Székely: The algebraic difference of two random Cantor sets: the Larsson family, puiblikálásra benyújtva elérhető: www.math.bme.hu/~simonk/papers, 2009 | D. Szász,: Some challenges in the theory of (semi)-dispersing billiards, Nonlinearity, invited paper, 21:187-193, 2008 | D. Szász,: Algebro-Geometric Methods for Hard Ball Systems, Discrete and Continuous Dyn. Systems, Ser. A. 22:427-443,, 2008 |
|
|
|
|
|
|
vissza »
|
|
|