|
Ezen az oldalon az NKFI Elektronikus Pályázatkezelő Rendszerében nyilvánosságra hozott projektjeit tekintheti meg.
vissza »
|
|
Közleményjegyzék |
|
|
Mátrai T: On l_p-like equivalence relations, Real Anal. Exchange 34: 377-412, 2009 | Fujita H; Mátrai T: On the difference property of Borel measurable functions, Fund. Math. 208: 57-73, 2010 | Mátrai T: On a sigma-ideal of compact sets, Topol. Appl. 157: 1479-1484, 2010 | Elekes M; Keleti T; Máthé A: Self-similar and self-affine sets;measure of the intersection of two copies, Ergodic Theory Dynam. Systems 30: 399-440, 2010 | Elekes M; Máthé A: Can we assign the Borel hulls in a monotone way?, Fund. Math. 205: 105-115, 2009 | Máthé A: Measurable functions are of bounded variation on a set of dimension 1/2, Bull. London Math. Soc., doi: 10.1112/blms/bds106, 2013 | Máthé A: Covering the real line with translates of a zero dimensional compact set, Fund. Math. 213: 213-219., 2011 | Balka R; Elekes M: The structure of continuous rigid functions of two variables, Real Anal. Exchange 35: 139-156, 2009 | Elekes M: On a converse to Banach's Fixed Point Theorem, Proc. Amer. Math. Soc. 137: 3139-3146, 2009 | Balka R: Duality between measure and category in uncountable locally compact abelian Polish groups, Real Analysis Exchange 36: 245-256, 2011 | Gyenes Z: The ratio of the perimeter and area of unions of copies of a fixed set, Discrete and Computational Geometry 45: 400-409, 2011 | Elekes M., Mátrai T., Soukup L.: On splitting infinite-fold covers, Fund. Math. 212: 95-127, 2011 | Elekes M.: A covering theorem and the random-indestructibility of the density zero ideal, Real Anal. Exchange (közlésre elfogadva), 2012 | Harangi V: The Koch snowflake curve is tube-null, Proc. Amer. Math. Soc. 139: 1375-1381, 2011 | Harangi V: Acute sets in Euclidean spaces, SIAM J. Discrete Math. 25: 1212-1229., 2011 | Mátrai T: More cofinal types of definable directed orders, Trans. Amer. Math. Soc. (közlésre benyújtva), 2011 | Mátrai T; Eisner T: On typical properties of Hilbert space operators, Israel J. Math. (közlésre elfogadva), 2012 | Keleti T; Paquette E: The Trouble with von Koch Curves Built from n-gons, Amer Math Monthly 117: 124-137, 2010 | Järvenpää E; Järvenpää M; Keleti T; Máthé A: Continuously parametrized Besicovitch sets in R^n, Ann. Acad. Sci. Fenn. Math. 36: 411-421, 2011 | Keleti T: Translations, measure and dimension, MTA Doktora disszertáció, 2011 | Harangi V; Keleti T; Kiss G; Maga P; Máthé A; Mattila P; Strenner B: How large dimension guarantees a given angle?, Monatshefte fur Mathematik, megjelenés alatt, 2013 | Harangi V: Large dimensional sets not containing a given angle, Cent. Eur. J. Math. 9: 757-764., 2011 | Järvenpää E; Järvenpää M; Keleti T: Hausdorff dimension and non-degenerate families of projections, (közlésre benyújtva), 2012 | Elekes M; Keleti T; Máthé A: Reconstructing geometric objects from the measures of their intersections with test sets, Journal of Fourier Analysis and Applications, megjelenés alatt, 2013 | Harangi V: On the density of triangles and squares in regular finite and unimodular random graphs, (közlésre benyújtva), 2012 | Balka R; Harangi V: Intersection of continua and rectifiable curves, Proc. Edinb. Math. Soc., elfogadva, 2013 | Balka R; Elekes M: Continuous horizontally rigid functions of two variables are affine, Aequationes Math. 84: 27-39, 2012 | Balka R; Máthé A: Generalized Hausdorff measure for generic compact sets, Ann. Acad. Sci. Fenn. Math., elfogadva, 2013 | Balka R: Metric spaces admitting only trivial weak contractions, Fund. Math., elfogadva., 2013 | M Elekes; J Steprāns: Haar null sets and the consistent reflection of non-meagreness, (közlésre benyújtva), 2012 | Hrusak M; Mátrai T; Nekvinda A; Vlasak V; Zindulka O: Properties of Functions With Monotone Graphs, Acta Math. Hung., elfogadva, 2013 | Balka R; Buczolich Z; Elekes M: Topological Hausdorff dimension and level sets of generic continuous functions on fractals, (közlésre benyújtva), 2012 | Balka R; Buczolich Z; Elekes M: A new fractal dimension: The topological Hausdorff dimension, Chaos Solitons Fractals 45: 1579-1589, 2012 | Balka R; Elekes M; Máthé A: Answer to a question of Kolmogorov, benyújtva, 2013 | Balka R; Farkas Á; Fraser MJ; Hyde JT: Dimension and measure for generic continuous images, Ann. Acad. Sci. Fenn. Math. 38: 389-404, 2013 | Balka R: Inductive topological Hausdorff dimensions and fibers of generic continuous functions, benyújtva, 2013 | Vidnyánszky Zoltán: Transfinite inductions producing coanalytic sets, benyújtva, 2013 | Keleti T;Máthé A; Zindulka O: Hausdorff dimension of metric spaces and Lipschitz maps onto cubes, International Mathematics Research Notices; doi: 10.1093/imrn/rns223, 2012 | Hladký J; Máthé A; Patel V; Pikhurko O: Poset limits can be totally ordered, benyújtva, 2013 | Kiss G; Varga A: Existence of nontrivial solutions of linear functional equations, Aequationes Math., közlésre elfogadva, 2013 | Kiss G: Linear functional equations with algebraical coefficients, benyújtva, 2013 | Mátrai T: On a sigma-ideal of compact sets, Topol. Appl. 157: 1479-1484, 2010 | Elekes M: On a converse to Banach's Fixed Point Theorem, Proc. Amer. Math. Soc. 137: 3139-3146, 2009 | Elekes M., Mátrai T., Soukup L.: On splitting infinite-fold covers, Fund. Math. 212: 95-127, 2011 | Elekes M.: A covering theorem and the random-indestructibility of the density zero ideal, Real Anal. Exchange 37: 55-60, 2011 | Mátrai T: More cofinal types of definable directed orders, Trans. Amer. Math. Soc. (közlésre benyújtva), 2011 | Mátrai T; Eisner T: On typical properties of Hilbert space operators, Israel J. Math. 195: 247-281, 2012 | Järvenpää E; Järvenpää M; Keleti T; Máthé A: Continuously parametrized Besicovitch sets in R^n, Ann. Acad. Sci. Fenn. Math. 36: 411-421, 2011 | Harangi V; Keleti T; Kiss G; Maga P; Máthé A; Mattila P; Strenner B: How large dimension guarantees a given angle?, Monatshefte fur Mathematik 171: 169-187, 2013 | Järvenpää E; Järvenpää M; Keleti T: Hausdorff dimension and non-degenerate families of projections, Journal of Geometric Analysis, megjelenés alatt, 2014 | Elekes M; Keleti T; Máthé A: Reconstructing geometric objects from the measures of their intersections with test sets, Journal of Fourier Analysis and Applications 19: 545-576, 2013 | Harangi V: On the density of triangles and squares in regular finite and unimodular random graphs, Combinatorica 33: 531-548, 2013 | Balka R; Elekes M: Continuous horizontally rigid functions of two variables are affine, Aequationes Math. 84: 27-39, 2012 | Balka R; Máthé A: Generalized Hausdorff measure for generic compact sets, Ann. Acad. Sci. Fenn. Math. 38: 797-804, 2013 | Balka R: Metric spaces admitting only trivial weak contractions, Fund. Math. 221: 83-94, 2013 | M Elekes; J Steprāns: Haar null sets and the consistent reflection of non-meagreness, Canad. J. Math, közlésre elfogadva, 2014 | Hrusak M; Mátrai T; Nekvinda A; Vlasak V; Zindulka O: Properties of Functions With Monotone Graphs, Acta Math. Hung. 142: 1-30, 2014 | Balka R; Buczolich Z; Elekes M: Topological Hausdorff dimension and level sets of generic continuous functions on fractals, Chaos Solitons Fractals 45: 1579-1589, 2012 | Balka R; Buczolich Z; Elekes M: A new fractal dimension: The topological Hausdorff dimension, közlésre benyújtva, 2012 | Balka R; Elekes M; Máthé A: Answer to a question of Kolmogorov, Proc. Amer. Math. Soc., közlésre elfogadva, 2014 | Vidnyánszky Zoltán: Transfinite inductions producing coanalytic sets, Fund. Math., közlérsre elfogadva, 2014 | Keleti T;Máthé A; Zindulka O: Hausdorff dimension of metric spaces and Lipschitz maps onto cubes, International Mathematics Research Notices 2014: 289-302, 2014 | Hladký J; Máthé A; Patel V; Pikhurko O: Poset limits can be totally ordered, Trans. Amer. Math. Soc., megjelenés alatt, 2014 | Kiss G: Linear functional equations with algebraical coefficients, Publ. Math. Debrecen, közlésre elfogadva, 2014 | Kiss G; Somlai G: Decomposition of balls in Rd, (közlésre elküldve), 2014 | Kiss G; Laczkovich M: Linear functional equations, differential operators and spectral synthesis, (közlésre elküldve), 2014 | Elekes M, Vidnyánszky Z:: Haar null sets without G_\delta hulls, (közlésre elküldve), 2014 | Balka R; Darji U; Elekes M: Bruckner-Garg-type results with respect to Haar null sets in C[0,1], (közlésre benyújtva), 2014 | Csörnyei M; Suomala V: On Cantor sets and doubling measures, J. Math. Anal. Appl. 393: 680-691, 2012 |
|
|
|
|
|
|
vissza »
|
|
|