|
Differenciál- és differenciaegyenletek elmélete és alkalmazásai
|
súgó
nyomtatás
|
Ezen az oldalon az NKFI Elektronikus Pályázatkezelő Rendszerében nyilvánosságra hozott projektjeit tekintheti meg.
vissza »
|
|
Közleményjegyzék |
|
|
Győri I., E. Awwad: On the boundedness of the solutions in nonlinear discrete Volterra dierence equations, Adv. Difference Equ. 2012:2, 2012 | Győri I., Horváth L.: Sharp algebric periodicity conditions for linear higher order difference equations, Computers and Mathematics with Applications, v. 64, 2262-2274, 2012 | Győri I., Hartung F.: Asymptotic behavior of nonlinear difference equations, J. Difference Equations and Aapplications, v. 18:(9), 1485-1509, 2012 | Appleby J.A.D., Győri I., Reynolds D.W.: History-dependent decay rates for a logistic equation with infinite delay, P Roy Soc Edinb A 141, pp. 23-44, 2011 | Győri I., Horváth L.: lp-solutions and stability analysis of difference equations using the Kummer's test, Appl Math Comput, v.217:(24), 10129-10145, 2011 | Győri I., Karakoç F., Bereketoǧlu H.: Convergence of solutions of a linear impulsive differential equations system with many delays, Dynam Cont Dis Ser A, v.18:(2), 191-202, 2011 | Horváth L.: A method to refine the discrete Jensen's inequality for convex and mid-convex functions, Math Comput Model, v.54:(9-10), 2451-2459, 2011 | Horváth L.: A parameter-dependent refinement of the discrete Jensen's inequality for convex and mid-convex functions, J Inequal Appl, 2011:26, 2011 | Horváth L., Pečarić J.: A refinement of the discrete Jensen's inequality, Math Inequal Appl, v.14:(4), 777-791, 2011 | Horváth L., Khan K. A., Pečarić J.: Refinements of results about weighted mixed symmetric means and related Cauchy means, J Inequal Appl, Art. ID 350973, 2011 | Pituk M.: A link between the Perron-Frobenius theorem and Perron's theorem for difference equations, Linear Algebra and its Applications, v.434, 490-500, 2011 | Hartung F.: Differentiability of solutions with respect to parameters in differential equations with state-dependent delays, Dissertation submitted for the degree Doctor of the Hungarian Academy of Sciences, 2011 | Pituk M.: A limit boundary value problem for nonlinear difference equations, Proceedings of the Workshop "Future Directions in Difference Equations: Universidade de Vigo, June 13-17, 2011, Spain", Universidade de Vigo, p. 157-161, 2011 | L. Horváth, Khuram Ali Khan, J. Pecaric: Refi
nements of Hölder and Minkowski inequalities with weights, Proc. A. Razmadze Math. Inst., v. 158, 33-56, 2012 | Pituk M.: A note on the oscillation of linear time-invariant systems, Applied Mathematics Letters v. 25, 876-879, 2012 | Obaya, R., Pituk M.: A variant of the Krein-Rutman theorem for Poincaré difference equations, Journal of Difference Equations and Applications, v.18, 1751-1762, 2012 | Győri I. and F. Hartung: Asymptotically exponential solutions in nonlinear integral and differential equations, J. Differential Equations, v. 249. 1322-1352, 2010 | Győri I., Horváth L.: A new view of the lp-theory for a system of higher order difference equations, Computers and Mathematics with Applications, v. 59, 2918-2932, 2010 | Győri I., Horváth L.: Asymptotic constancy in linear difference equations: Limit formulae and sharp conditions, Advances in Difference Equations, Article ID 789302, 20 pages (doi:10.1155/2010/789302), 2010 | Győri I., Horváth L.: Asymptotic behaviour of the solutions of a nonautonomous linear delay difference systems, Applied Mathematics and Computation, v. 217, 40205-40216, 2010 | Győri I., Reynolds D. W.: On admissibility of of the resolvent of discrete Volterra equations, J. Difference Equations Appl., v. 16, 1393-1412, 2010 | Krasznai B., Győri I., Pituk M.: The modified chain method for a class of delay differential equations arising in neural networks, Mathematical and Computer Modelling, v. 51, 452-460, 2010 | Krasznai B., Győri I., Pituk M.: Positive decreasing solutions of higher-order nonlinear difference equations, Advances in Difference Equations, Article ID 973432, 16 pages (doi:10.1155/2010/973432), 2010 | Győri I., Reynolds D. W.: On asymptotic periodic solutions of linear discrete Volterra equations, Fasciculi Mathematici, v. 44, 53-67, 2010 | Slezák B.: On the smooth parameter-dependence of the solutions of abstract functional differential equations with state-dependent delay, Functional Differential Equations, v.17 (3-4.) 253-293, 2010 | Pituk M.: A note on nonnegative solutions of a perturbed system of ordinary differential equations, Annales Univ. Sci. Budapest v.53, 91-96., 2010 | Hartung F.: Differentiability of solutions with respect to the initial data in differential equations with state-dependent delays, J. Dynamics and Differential Equations v. 23(4), 843-884, 2011 | Hartung F.: On Differentiability of Solutions with respect to Parameters in Neutral Differential Equations with State-Dependent Delays, Annali di Matematica-Pura ed Applicata, DOI 10.1007/s10231-011-0210-5, 2011 | Győri, I. and F. Hartung: On Numerical Approximation using Differential Equations with Piecewise-Constant Arguments, Periodica Mathematica Hungarica, Vol. 56(1) 55-69, 2008 | Hartung, F.: Linearized Stability for a Class of Neutral Functional Differential Equations with State-Dependent Delays, J. Nonlinear Analysis: Theory, Methods and Applications, v. 69, 1629–1643, 2008 | Medina, R. and M. Pituk: Asymptotic behavior of a linear difference equation with continuous time, Periodica Mathematica Hungarica, vol. 56, 97-104, 2008 | Győri, I. and L. Horváth: Asymptotic representation of the solutions of linear Volterra difference equations, Adv. Difference Equ., Art. ID 932831, 22 pp., 2008 | Horváth, L.: Generalization of a Bihari type integral inequality for abstract Lebesgue integral, J. Math. Inequal, vol 2(1), 115-128, 2008 | Győri, I. and L. Horváth: New limit formulas for the convolution of a function with a measure and their applications, J. Inequal. Appl., Art. ID 748929, 35 pp., 2008 | Slezák, B.: On the parameter-dependence of the solutions of functional differential equations with unbounded state-dependent delay II. The Kneser-theorem and some comparison theorems, International Journal of Qualitative Theory of Differential Equations and Applications, vol. 2(2), 214-228, 2008 | Győri, I. and L. Horváth: Limit theorems for discrete sums and convolutions, Communications of the Laufen colloquium on science Laufen, Austria, April 1-5, 2007. Aachen: Shaker. Berichte aus der Mathematik, 8, 1-20, 2008 | Medina, R. and M. Pituk: Nonoscillatory solutions of a second-order difference equation of Poincaré type, Applied Mathematics Letters, v. 22, 679-683, 2009 | Pituk M.: Nonnegative iterations with asymptotically constant coefficients, Linear Algebra and Its Applications, v. 431, 1815-1824, 2009 | Győri I. and F. Hartung: On the Exponential Stability of a Nonlinear State-Dependent Delay System, in Advances in Mathematical Problems in Engineering Aerospace and Sciences, vol.3, Advances in Nonlinear Analysis: Theory, Methods and Applications, ed. S. Sivasundaram, J. Vasundhara Devi, Z. Drici, F. Mcrae. Cambridge Scientific Publ. , 39-48, 2009 | Horváth L.: Inequalities corresponding to the classical Jensen's inequality, J. Math. Inequal. v. 3, no. 2, 189-200, 2009 | Horváth L.: Generalized Bihari type integral inequalities and the corresponding integral equations, J. Inequal. Appl., Art. ID 409809, 20 pp., 2009 | Győri I. and D. Reynolds: Sharp conditions for boundedness in linear discrete Volterra equations, Journal of Difference Equations and Applications, v. 15 (11-12), 1151-1164, 2009 |
|
|
|
|
|
|
vissza »
|
|
|