|
Parciális differenciálegyenletek, komplex hálózatok és alkalmazásaik
|
súgó
nyomtatás
|
Ezen az oldalon az NKFI Elektronikus Pályázatkezelő Rendszerében nyilvánosságra hozott projektjeit tekintheti meg.
vissza »
|
|
Közleményjegyzék |
|
|
Sharkey,. K.J., Kiss, I.Z, Wilkinson, R.R., Simon, P.L.: Exact equations for SIR epidemics on tree graphs, Bull. Math. Biol. 77(4), 614.645, 2015 | Bátkai, A., Havasi, Á., Horváth, R., Kunszenti-Kovács, D., Simon, P.L.: PDE approximation of large systems of differential equation, Operators and Matrices, 9 (1), 147-163, 2015 | L. Simon: Semilinear hyperbolic functional equations, Banach Center Publications, 101, 207-224, 2014 | L. Simon: On systems of semilinear hyperbolic functional equations, Stud. Univ. Babes-Bolyai Math. 59, 479-495, 2014 | L. Simon: On semilinear hyperbolic functional equations with state-dependent delays, Recent Advances in Delay Differential and Difference Equations, Springer Proceedings in Mathematics and Statistics 94, Springer, 233-250, 2014 | I. Faragó, Z. Zlatev: Application of Richardson Extrapolation for multi-dimensional advection equations, Computer and Mathematics with Application, 67, 2279-2293, 2014 | Zlatev Z, Farago I, Havasi:A: Mathematical treatment of environmental models, Springer Series "Mathematics in Industry", Volume "Progress in Industrial Mathematics at ECMI 2012, 65-70., 2014 | Simon P L, Taylor M, Kiss I Z: Exact epidemic models on graphs using graph-automorphism driven lumping, J MATH BIOL 62: (4) 479-508, 2011 | Kiss I Z, Cassell J, Recker M, Simon P L: The impact of information transmission on epidemic outbreaks, MATH BIOSCI 225: (1) 1-10, 2010 | Csörgő Gábor, Simon L. Péter: Numerical and analytical study of bifurcations in a model of electrochemical reactions in fuel cells, COMPUT MATH APPL 65: (3) 325-337, 2013 | Nagy N, Simon PL: Monte Carlo simulation and analytic approximation of epidemic processes on large networks, CENT EUR J MATH 11: (4) 800-815, 2013 | Hatzopoulos V, Taylor M, Simon P L, Kiss I Z: Multiple sources and routes of information transmission: Implications for epidemic dynamics, MATH BIOSCI 231: (2) 197-209, 2011 | B.Indig, B.M.Garay: Chaos in Vallis' asymmetric model for El Nino, Chaos Solitons and Fractals, 75, 253--262, 2015 | M.Forti, B.M.Garay, M.Koller, L.Pancioni: Long transient oscillations in a class of cooperative cellular neural networks, Int. J. Circuit Theory Applications 43, 635--655, 2015 | Á. Besenyei: On a system consisting of three different types of differential equations, Acta Math. Hungar., 127(1-2), 178-194., 2010 | Á. Besenyei: On some systems containing a parabolic PDE and a first order ODE, Math. Bohemica, 135(2), 133-141, 2010 | L. Simon: On some singular systems of parabolic functional equations, Math. Bohemica 135, 123-132, 2010 | L. Simon: On nonlinear functional parabolic equations with state-dependent delays of Volterra type, Internat J. Qualitative Theory Differential Equations Appl. 2, 88-103, 2010 | K.-J. Engel, M. Kramar Fijavž, B. Klöss, R. Nagel, E. Sikolya: Maximal controllability for boundary control problems, Appl. Math. Optim. 62, 205-227, 2010 | Kiss., I.Z., Cassell, J., Recker, M., Simon, P.L.: The impact of information transmission on epidemic outbreaks, Math. Biosci. 225, 1-10, 2010 | Simon, P.L., Taylor, M., Kiss., I.Z.: Exact epidemic models on graphs using graph-, J. Math. Biol., 62, 479–508, 2011 | András Bátkai, Petra Csomós, Bálint Farkas, and Gregor Nickel: Operator splitting for nonautonomous evolution equations, J. Funct. Anal. 260, 2163-2190, 2011 | I. Faragó: Discrete maximum principle for finite element parabolic models in higher dimensions, Math. Comp. Sim., 80, 1601-1611, 2010 | G.Colombo, M.Feckan, B.M.Garay: Multivalued perturbations of a saddle dynamics, Diff. Eq. Dyn. Syst., 18, 29--56, 2010 | R.Csikja, B.M.Garay, J.Tóth: Chaos via two--valued interval maps in a piecewise affine model example for hysteresis, Proceedings of the 18th International Symposium on the Mathematical Theory of Networks and Systems (MTNS), Budapest, July 2010, pp. 187--194., 2010 | B.M.Garay: The Euler--Poincaré formula for systems with hysteresis in two dimension, Ann. Univ. Budapest Sect. Math., 53, 59-68, 2010 | L. Simon: On singular systems of parabolic functional equations, Operator Theory: Advances and Applications, 216, 317-330, 2011 | L. Simon: Nonlinear second order evolution equations with state-dependent delays, EJQTDE, Proc. 9th Coll. QTDE, No. 14, 1-12., 2012 | Hatzopoulos, V., Taylor, M., Simon, P.L., Kiss., I.Z.: Multiple sources and routes of information transmission: implications for epidemic dynamics, Math. Biosci., 231, 197-209, 2011 | Bátkai, A., Kiss, I.Z., Sikolya.E., Simon, P.L.: Differential equation approximations of stochastic network processes: an operator semigroup approach, Netw. Heter. Media., 7, 43-58, 2012 | Szabó, A., Simon, P.L., Kiss., I.Z.: Detailed study of bifurcations in an epidemic model on a dynamic network, Differ. Equ. Appl., 4, 277-296, 2012 | I. Faragó, S. Korotov, T. Szabó: On modifications of continuous and discrete maximum principles for reaction-diffusion problems, Adv. Appl.Math. Mech., 3, 109-120, 2011 | Bátkai A, Csomós P, Farkas B: Operator splitting for nonautonomous delay equations, COMPUTERS AND MATHEMATICS WITH APPLICATIONS 65, 315-324, 2013 | Bátkai A, Csomós P, Farkas B, Nickel G.: Operator splitting with spatial-temporal discretization, OPERATOR THEORY : ADVANCES AND APPLICATIONS 221: pp. 161-171, 2012 | András Bátkai, Petra Csomós, Klaus-Jochen Engel, Bálint Farkas: Stability and Convergence of Product Formulas for Operator Matrices, INTEGRAL EQUATIONS AND OPERATOR THEORY 74:(2) pp. 281-299, 2012 | András Bátkai, Ullrich Groh, Dávid Kunszenti-Kovács, Marco Schreiber: Decomposition of operator semigroups on W*-algebras, SEMIGROUP FORUM 84: pp. 8-24, 2012 | A. Besenyei, P. Simon: Asymptotic output controllability via Dynamic Matrix Control, Differ. Eq. Appl., 4, 495-519, 2012 | G.Colombo, M.Feckan, B.M.Garay: Inflated deterministic chaos and Smale's horseshoe, J. Difference Eq. Appl. 18, 471--488, 2012 | B.M.Garay, A.Simonovits, J.Tóth: Local interaction in tax evasion, Economics Letters 115, 412-415, 2012 | M.Forti, B.M.Garay, M.Koller, L.Pancioni: An experimental study on long transient oscillations in cooperative CNN rings, Proceedings of the 13th International Workshop on Cellular Nanoscale Networks and their Applications, 2012 | I. Faragó, J. Karátson, S. Korotov: Discrete maximum principles for the FEM solution of some nonlinear parabolic problems, IMA Numerical Analysis, 32, 1541–1573, 2012 | Mincsovics M. E., Horváth L. T: On the differences of the discrete weak and strong maximum principles for elliptic operators, Lecture Notes in Computer Science, Springer 7116, 614—621, 2012 | Horváth L. T., Izsák F: Implicit a posteriori error estimation using patch recovery techniques, Cent. Eur. J. Math. 10(1), 55-72, 2012 | András Bátkai, Eszter Sikolya: The norm convergence of a Magnus expansion method, Cent. Eur. J. Math.10: pp. 150-158., 2012 | Taylor, M., Simon, P.L., Green, D.M., House, T., Kiss., I.Z: From Markovian to pairwise epidemic models and the performance of moment closure approximations, J. Math. Biol., 64, 1021-1042, 2012 | Simon, P.L., Kiss, I.Z.: New moment closures based on a priori distributions with applications to epidemic dynamics, Bull. Math. Biol., 74,1501-1515, 2012 | Simon, P.L., Kiss, I.Z.: From exact stochastic to mean-field ODE models: a new approach to prove convergence results, IMA J. Appl. Math., 2012, doi: 10.1093/imamat/hxs001, 2012 | Kiss., I.Z., Berthouze, L., Taylor, T.J., Simon, P.L.: Modelling approaches for simple dynamic networks and applications to disease transmission models, Proc.Roy.Soc.A, 468 (2141), 1332-1355, 2012 | Nagy, N., Simon, P.L.: Monte-Carlo simulation and analytic approximation of epidemic processes on large networks, Central European Journal of Mathematics, 11(4), 800-815, 2013 | Taylor, T.J., Hartley, C., Simon, P.L., Kiss., I.Z., Berthouze, L.: Identification of criticality in neuronal avalanches: I. A theoretical investigation of the non-driven case, J. Math. Neuroscience, doi:10.1186/2190-8567-3-5, 2013 | Csörgő, G., Simon, P.L.: Numerical and analytical study of bifurcations in a model of electrochemical reactions in fuel cells, Computers and Mathematics with Applications, 65, 325-337, 2013 | Ghazaryan, A., Schecter, S., Simon, P.L.: Gasless combustion fronts with heat loss, SIAM J. Appl. Math., 73(3), 1303-1326, 2013 | Faragó István, Havasi Ágnes, Zlatev Zahari: Advanced Numerical Methods for Complex Environmental Models: Needs and Availability, BENTHAM SCIENCE PUBL. LTD, 2013 | Farago I, Izsak F, Szabo T.: An IMEX scheme combined with Richardson extrapolation methods for some reaction-diffusion equations, IDŐJÁRÁS / QUARTERLY JOURNAL OF THE HUNGARIAN METEOROLOGICAL SERVICE 117:(2), 2013 | András Bátkai, Petra Csomós, Bálint Farkas: Operator splitting for dissipative delay equations, IMA Journal of Numerical Analysis (accepted), 2013 | M.Forti, B.M.Garay, M.Koller, L.Pancioni: Long transient oscillations in a class of cooperative cellular neural networks, Int. J. Circuit Theory Applications, DOI: 10.1002/cta.1965, 2013 | M.DiMarco, M.Forti, B.M.Garay, M.Koller, L.Pancioni: Multiple metastable rotating waves and long transients in cooperative CNN rings, European Conference on Circuit Theory and Design (ECCTD), 2013 | B.M.Garay, A.Simonovits, J.Tóth: Local interaction in tax evasion, Economics Letters 115, 412-415, 2012 | Nagy N, Kiss IZ, Simon PL: Approximate master equations for dynamical processes on graphs, MATH MODEL NAT PHENO 9: (2) 43-57, 2014 | Szabó-Solticzky A, Simon PL: The effect of graph structure on epidemic spread in a class of modified cycle graphs, MATH MODEL NAT PHENO 9: (2) 89-107, 2014 | Kiss IZ, Morris CG, Selley F, Simon PL, Wilkinson RR: Exact deterministic representation of Markovian epidemics on networks with and without loops, J MATH BIOL 70: (3) 437-464, 2015 | Sélley F, Besenyei Á, Kiss IZ, Simon PL: Dynamic control of modern, network-based epidemic models, SIAM J APPL DYN SYST 14: (1) 168-187, 2015 | Simon PL, Kiss IZ: From exact stochastic to mean-field ODE models: a new approach to prove convergence results, IMA J APPL MATH 78: (5) 945-964, 2013 |
|
|
|
|
|
|
vissza »
|
|
|