Alagúthatás újonnan előállítandó hidroxikarbénekben  részletek

súgó  nyomtatás 
vissza »

 

Projekt adatai

 
azonosító
91234
típus NN
Vezető kutató Császár Attila Géza
magyar cím Alagúthatás újonnan előállítandó hidroxikarbénekben
Angol cím Tunneling in novel hydroxycarbenes
magyar kulcsszavak hidroxikarbének, alagúthatás, szintézis, mátrixizoláció, spektroszkópia, molekuladinamika, szerkezetvizsgálat
angol kulcsszavak hydroxycarbenes, tunneling, synthesis, matrix isolation, spectroscopy, molecular dynamics, structural studies
megadott besorolás
Szerves-, biomolekuláris- és gyógyszerkémia (Műszaki és Természettudományok Kollégiuma)50 %
Ortelius tudományág: Intermedierek kémiája
Fizikai kémia és elméleti kémia (Műszaki és Természettudományok Kollégiuma)50 %
Ortelius tudományág: Kvantumkémia
zsűri Kémia 1
Kutatóhely Kémiai Intézet (Eötvös Loránd Tudományegyetem)
résztvevők Czakó Gábor
Furtenbacher Tibor
Mátyus Edit
projekt kezdete 2009-09-01
projekt vége 2014-08-31
aktuális összeg (MFt) 24.226
FTE (kutatóév egyenérték) 7.19
állapot lezárult projekt
magyar összefoglaló
Building on the complementary backgrounds and expertise of the Giessen (experimental organic chemists and spectroscopists) and the Budapest (computational quantum chemists) groups, we propose a joint program that uniquely combines the preparation, detection, and spectroscopic as well as computa-tional characterization of designed novel carbenes exhibiting enhanced hydrogen and possibly heavy-atom tunnelling under large barriers at low cryogenic temperatures (down to 6 K). The very low temperatures and the noble gas environment of cryogenic matrices are ideally suited for quantum chemical reaction rate and tunnelling (quantum reaction dynamics) studies on single ground-state surfaces. The proposed full- and reduced-dimensionality reaction dynamics computations are expected to guide new experiments and, when augmented with sophisticated electronic structure computations, should shed light on the factors that govern enhanced quantum mechanical tunnelling under large barriers near 0 K on timescales of minutes to days. Questions the proposed research aims to answer include: (a) how do electronic substituent effects alter the rates of H-tunnelling in novel unsaturated hydroxycarbenes; (b) how large a barrier can be afforded for observable H-tunnelling; and (c) can hydrogen bonding be used to tune the rate of H-tunneling?
Novel aspects of the proposed research program include: (a) systematic preparation of a series of electronically related substituted, currently unknown hydroxycarbenes; (b) development of synthetic routes to substituted hydroxycarbenes; (c) studying the electronic effects on tunnelling, utilizing the most advanced levels of quantum chemistry (including ground-breaking electronic structure, nuclear motion, and reaction dynamics computations); (d) variational determination of rovibrational spectra of carbenes containing five or more atoms and/or multiple minima on their PES; (e) quantum chemical computation of microcanonical rate constants based on the availability based on a time-independent machinery similar to that which allows determination of a nearly complete set of stationary rotational-vibrational wave functions and energy levels.
angol összefoglaló
We propose a joint program that uniquely combines the preparation, detection, and spectroscopic as well as computational characterization of designed novel carbenes exhibiting enhanced hydrogen and possibly heavy-atom tunnelling under large barriers at low cryogenic temperatures. The very low temperatures and the noble gas environment of cryogenic matrices are ideally suited for quantum chemical reaction rate and tunnelling (quantum reaction dynamics) studies on single ground-state surfaces. The proposed full- and reduced-dimensionality reaction dynamics computations are expected to guide new experiments and, when augmented with sophisticated electronic structure computations, should shed light on the factors that govern enhanced quantum mechanical tunnelling under large barriers near 0 K on timescales of minutes to days. Questions the proposed research aims to answer include: (a) how do electronic substituent effects alter the rates of H-tunnelling in novel unsaturated hydroxycarbenes; (b) how large a barrier can be afforded for observable H-tunnelling; and (c) can hydrogen bonding be used to tune the rate of H-tunneling?
Novel aspects of the proposed research program include: (a) systematic preparation of a series of electronically related substituted, currently unknown hydroxycarbenes; (b) development of synthetic routes to substituted hydroxycarbenes; (c) studying the electronic effects on tunnelling, utilizing the most advanced levels of quantum chemistry (including ground-breaking electronic structure, nuclear motion, and reaction dynamics computations); (d) variational determination of rovibrational spectra of carbenes containing five or more atoms and/or multiple minima on their PES; (e) quantum chemical computation of microcanonical rate constants based on the availability based on a time-independent machinery similar to that which allows determination of a nearly complete set of stationary rotational-vibrational wave functions and energy levels.





 

Projekt eseményei

 
2013-01-07 08:21:38
Résztvevők változása
2011-01-17 13:22:26
Résztvevők változása




vissza »