Consortional main: Development of novel silicon carbide nanomarkers and more effective glutamate and GABA uncaging materials for measurement of neuronal network activity and dendritic integration with three-dimensional real-time two-photon microscopy  Page description

Help  Print 
Back »

 

Details of project

 
Identifier
105997
Type K
Principal investigator Rózsa, Balázs
Title in Hungarian Konzorcium, fő p.: Újfajta 2-fotonos fotokémiai anyagok és szilicium karbid alapú nanomarkarek fejlesztése neuronhálózatok aktivitásának és a dendritikus jel integrációnak gyors, három dimenziós multi-foton mikroszkópiával történő mérésére
Title in English Consortional main: Development of novel silicon carbide nanomarkers and more effective glutamate and GABA uncaging materials for measurement of neuronal network activity and dendritic integration with three-dimensional real-time two-photon microscopy
Keywords in Hungarian két-foton effektus, 3D képalkotás, lézer szkennelés, multifoton mikroszkópia, neuronhálózatok, dendritikus jelintegráció, szilicium karbid nanokristályok, két-fotonos fotostimuláció
Keywords in English two-photon, 3D imaging, laser scanning, multiphoton microscopy, neuronal networks, dendritic integration, silicium carbid nanocrystals, two-photon uncaging
Discipline
Neuroanatomy and neurophysiology (Council of Medical and Biological Sciences)85 %
Material Science and Technology (physics) (Council of Physical Sciences)10 %
Ortelius classification: Biomedical engineering
Material Science and Technology (chemistry) (Council of Physical Sciences)5 %
Panel Neurosciences
Department or equivalent Two-photon Imaging Center (Institute of Experimental Medicine Hungarian Academy of Sciences)
Participants Viskolcz, Béla
Starting date 2012-09-01
Closing date 2017-08-31
Funding (in million HUF) 17.399
FTE (full time equivalent) 3.50
state running project





 

Final report

 
Results in Hungarian
Sok technikai nehézség mellett a konzorcium tagjai megoldották a fotokémiai anyagok fejlesztését, mint például a SI:C kvantum dottok BAPTA-val való jelölését és a DNI-GABA fejlesztését, majd ezt implementáltuk a 3Ds mikroszkópiás környezetben. A DNI-Glu alkalmazási területét kiszélesítettük és HPLC-MS-FL technikával vizsgáltuk és jellemeztük a DNI-Glu fotokémiai és hidrolitikus bomlási sebességét. A DNI-GABA anyag viszont irodalomban teljesen új cage-Gaba anyagnak tekinthető. A DNI-GABA alkalmazásával számos új neurobiológiai eredményt tudtunk felmutatni. Nemcsak a módszereket validáló közlemények születtek meg, hanem a technikák használatával új idegtudományi felfedezések is születtek a konzorciumvezető által képviselt két fontos tudományterületi szegmensben, azaz a neuronhálózatok és neuronális nyúlványok szignál integrációjának vizsgálata területén. Jobban megértettük például új fotokémiai anyagaink és egy feszültség szenzor használatával a dendritek és dendrittüskék finom működési szabályait, például hogy hogyan kompertmentalizálják a membránfeszültséget. Ebben a témában több közlemény is megjelent, mint például a Nature Communication, Neuron és Nature Neuroscience, Organic and Biomolecule Chem., J. Chrom. lapokban. Nagyobb skálán pedig felderítettük a neuronhálózatok szerveződésének új elveit, ebben a második témakörben is három jelentős közlemény jelent meg, például többek között egy Science cikk a látókéreg neuronhálózatainak szerveződéséről.
Results in English
In spite of the several issues, arisen during the project evaluation, the members of the consortium have developed novel photochemical materials, such as SI:C quantum dots, linked with BAPTA as well as DNI-GABA. These were implemented into 3D microscopic applications. The applicability of DNI-Glu was widened and its photochemical as well as hydrolytic sensitivity/rate were studied and characterized. The application of the new, not described DNI-GABA compound exhibited novel neuroscientific results. However, not only simple, method validating papers were published, but by the combined applications of these techniques, new neuroscientific inventions were also reported on two scientific fields, represented by the leader of this consortium. For example, on the field of the signal integration of the neuronal networks. By the combined application of our new photochemical compounds and a voltage sensor we could revealed the fine details of the dendrite and dendrite spikes, for example, how they compensate the membrane potency. These results were reported in high impact journals i.e. Nature Communication, Neuron, Nature Neuroscience, Organic and Biomolecule Chem., J Chrom. On larger scale we have discovered new principles for the organization of neural networks, published in Science, describing the organization of the visual cortex.
Full text https://www.otka-palyazat.hu/download.php?type=zarobeszamolo&projektid=105997
Decision
Yes





 

List of publications

 
A. Vasanits-Zsigrai, O. Majercsik, G. Tóth, A. Csámpai, Cs. Haveland-Lukács,D. Pálfi, Z. Szadai, B. Rózsa, I. Molnár-Perl: Quantitation of various indolinyl caged glutamates as theiro-phthalaldehyde derivatives by high performance liquidchromatography coupled with tandem spectroscopic detections:Derivatization, stoichiometry and stability studies, Journal of Chromatography A, 2015
Deneux T, Kaszas A, Szalay G, Katona G, Lakner T, Grinvald A, Rózsa B, Vanzetta I.: Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo, https://www.ncbi.nlm.nih.gov/pubmed/27432255, 2016
Szalay G, Martinecz B, Lénárt N, Környei Z, Orsolits B, Judák L, Császár E, Fekete R, West BL, Katona G, Rózsa B, Dénes Á.: Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857403/, 2016
Castelletto S, Johnson B C, Ivády V, Stavrias N, Umeda T, Gali A, Ohshima T: A silicon carbide room-temperature single-photon source, NATURE MATERIALS, 2014
Chiovini B, Turi GF, Katona G, Kaszás A, Pálfi D, Maák P, Szalay G, Szabó MF, Szabó G, Szadai Z, Káli S, Rózsa B.: Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves., NEURON, 2014
Tønnesen J, Katona G, Rózsa B, Nägerl UV.: Spine neck plasticity regulates compartmentalization of synapses., NATURE NEUROSCIENCE, 2014
Beke D, Szekrényes Zs, Pálfi D, Róna G, Balogh I, Maák P.A., Katona G, Czigány Zs, Kamarás K, Rózsa B, Buday L, Vértessy B, Gali A: Silicon carbide quantum dots for bioimaging, JOURNAL OF MATERIALS RESEARCH, 2013
G. Mihajlik, A. Barócsi, P. Maák: Complex, 3D modeling of the acousto-optical interaction and experimental verification, Optics Express, vol. 22 (9) pp. 10165–10180, 2014
G. Mihajlik, A. Barócsi, P. Maák: Measurement and general modeling of optical rotation in anisotropic crystal, Optics Communications, 2014
Castelletto S, Johnson B C, Ivády V, Stavrias N, Umeda T, Gali A, Ohshima T: A silicon carbide room-temperature single-photon source, NATURE MATERIALS 13: pp. 151-156. (2014), 2014
Bálint Péter Kerekes, Kinga Tóth, Attila Kaszás, Balázs Chiovini, Zoltán Szadai, Gergely Szalay, Dénes Pálfi, Attila Bagó, Klaudia Spitzer, Balázs Rózsa, István Ulbert, Lucia Wittner: Combined two-photon imaging, electrophysiological and anatomical investigation of the human neocortex, in vitro, http://neurophotonics.spiedigitallibrary.org/issue.aspx, 2014
Castelletto S, Johnson B, Zachreson C, Beke D, Balogh I, Ohshima Takeshi, Aharonovich I, Gali A.: Room Temperature Quantum Emission from Cubic Silicon Carbide Nanoparticles., ACS NANO 8:(8) pp. 7938-7947. (2014), 2014
Szekrényes Zs, Somogyi B, Beke D, Károlyházy Gy, Balogh I, Kamarás K, Gali A.: Chemical Transformation of Carboxyl Groups on the Surface of Silicon Carbide Quantum Dots, JOURNAL OF PHYSICAL CHEMISTRY C - NANOMATERIALS AND INTERFACES 118:(34) pp. 19995-20001., 2014
Marko A. Popovic, Nicholas Carnevale, Balazs Rozsa & Dejan Zecevic: Electrical behaviour of dendritic spines as revealed by voltage imaging, Nature Communication, 2015
3. Adrian Wertz, Stuart Trenholm, Keisuke Yonehara, Daniel Hillier, Zoltan Raics, Marcus Leinweber, Gergely Szalay, Alexander Ghanem, Georg Keller, Balázs Rózsa, Karl-Klaus Conzelmann, and Botond Roska: Single-cell–initiated monosynaptic tracing reveals layer-specific cortical network module, Science, 2015
Wolfgang G. Bywalez, Balázs Rózsa, et al. & Veronica Egger: Electrical compartmentalization in olfactory bulb granule cell spines/Local postsynaptic sodium channel activation in olfactory bulb granule cell spines, Neuron, 2015
5. Williamson A, Ferro M, Leleux P, Ismailova E, Kaszas A, Doublet T, Quilichini P, Rivnay J, Rózsa B, Katona G, Bernard C, Malliaras GG: Localized Neuron Stimulation with Organic Electrochemical Transistors on Delaminating Depth Probes., Advanced Mater, 2015
Bouhadfane M, Kaszás A, Rózsa B, Harris-Warrick RM, Vinay L, Brocard F.: Sensitization of neonatal rat lumbar motoneuron by the inflammatory pain mediator bradykinin, Elife, 2015
Kusnyerik A, Rozsa B, Veress M, Szabo A, Nemeth J, Maak P: Modeling of in vivo acousto-optic two-photon imaging of the retina in the human eye, OPTICS EXPRESS, 2015
8. Bálint Péter Kerekes, Kinga Tóth, Attila Kaszás, Balázs Chiovini, Zoltán Szadai, Gergely Szalay, Dénes Pálfi, Attila Bagó, Klaudia Spitzer, Balázs Rózsa, István Ulbert, Lucia Wittner: Combined two-photon imaging, electrophysiological, and anatomical investigation of the human neocortex in vitro, NEUROPHOTONICS, 2014
9. Vasanits-Zsigrai A, Majercsik O, Tóth G, Csámpai A, Haveland-Lukács C, Pálfi D, Szadai Z, Rózsa B, Molnár-Perl I: Quantitation of various indolinyl caged glutamates as their o-phthalaldehyde derivatives by high performance liquid chromatography coupled with tandem spectroscopic detec, JOURNAL OF CHROMATOGRAPHY, 2015
David Beke, Zsolt Szekrényes, Zsolt Czigány, Katalin Kamarás and Adam Gali: Dominant Luminescence is not Due to Quantum Confinement in Molecular-Sized Silicon Carbide Nanocrystals, Nanoscale, 2015
Zsolt Szekrényes, Bálint Somogyi, Dávid Beke, Gyula Károlyházy, István Balogh, Katalin Kamarás, and Adam Gali: Chemical Transformation of Carboxyl Groups on the Surface of Silicon Carbide Quantum Dots, The Journal of Physical Chemistry C, 2014
12. Matthias Widmann,Sang-Yun Lee, Torsten Rendler, Nguyen Tien Son, Helmut Fedder, Seoyoung Paik, Li-Ping Yang, Nan Zhao, Sen Yang, Ian Booker, Andrej Denisenko, Mohammad Jamali, S. Ali Momenzadeh, Ilja Gerhardt, Takeshi Ohshima, Adam Gali, Erik Janzén, and Jörg Wrachtrup: Coherent control of single spins in silicon carbide at room temperature, Nature Materials, 2015
13. A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T.J. Karle, A. Gali, S. Prawer, J.C. McCallum, and B.C. Johnson: Single-photon emitting diode in silicon carbide;, Nature Communications, 2015
G Dravecz, L Bencs, D Beke, A Gali: Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry, http://www.sciencedirect.com/science/article/pii/S0039914015303581, 2016
D. Beke, T. Z. Jánosi, B. Somogyi, D. Á. Major, Z. Szekrényes, J. Erostyák, K. Kamarás, and A. Gali: Identification of Luminescence Centers in Molecular-Sized Silicon Carbide Nanocrystals, https://www.ncbi.nlm.nih.gov/pubmed/?term=Identification%20of%20Luminescence%20Centers%20in%20Molecular-Sized%20Silicon%20Carbide%20Nanocrystals, 2016
Gergely Szalay, Linda Judák, Gergely Katona, Katalin Ócsai, Gábor Juhász, Máté Veress, Zoltán Szadai, András Fehér, Tamás Tompa, Balázs Chiovini, Pál Maák, Balázs Rózsa: “Fast 3D imaging of spine, dendritic, and neuronal assemblies in behaving animals”, pubmed, 2016




Back »