Consortional main: M-ERA.NET-WaterSafe: Sustainable autonomous system for nitrites/nitrates and heavy metals monitoring of natural water sources  Page description

Help  Print 
Back »

 

Details of project

 
Identifier
117847
Type NN
Principal investigator Fried, Miklós
Title in Hungarian Konzorcium, fő p.: M-ERA.NET-WaterSafe: Sustainable autonomous system for nitrites/nitrates and heavy metals monitoring of natural water sources
Title in English Consortional main: M-ERA.NET-WaterSafe: Sustainable autonomous system for nitrites/nitrates and heavy metals monitoring of natural water sources
Keywords in Hungarian monitoring, szenzorika, anyagtudomány
Keywords in English monitoring, sensorics, materials science
Discipline
Material Science and Technology (physics) (Council of Physical Sciences)100 %
Ortelius classification: Nanotechnology (Materials technology)
Panel Physics
Department or equivalent Institute of Technical Physics and Materials Science (Centre for Energy Research)
Participants Agócs, Emil
Fodor, Bálint
Kalas, Benjamin
Lábadi, Zoltán
Lohner, Tivadar
Nádor, Judit
Petrik, Péter
Romanenko, Alekszej
Saftics, András
Szekrényes, Dániel Péter
Starting date 2016-01-01
Closing date 2019-08-31
Funding (in million HUF) 28.351
FTE (full time equivalent) 13.32
state closed project
Summary in Hungarian
A kutatás összefoglalója, célkitűzései szakemberek számára
Itt írja le a kutatás fő célkitűzéseit a témában jártas szakember számára.

The target is a new energy autonomous system based on micro (photo)electrochemical sensors, for concentration measurement of different ionic species in natural water sources.
It focuses on 3 directions: 1) new materials with high efficiency in solar energy harvesting and fabrication of small ultra-thin solar cells together; 2) new microsensors and materials for detection of nitrites/ nitrates and heavy metals in water; 3) low cost autonomous energy system integration and fabrication.
The microsensors for nitrates/nitrites and heavy metals will be of (photo)electrochemical type. A biosensor based on sensing protein molecules, flagellar filaments with specificity to heavy metals will be integrated.
The studied materials will be SnO2, TiO2 and ZnO. The thin films will be prepared by a broad variety of deposition techniques (sol-gel, spray pyrolysis, magnetron sputtering, hydrothermal synthesis) and will have different morphologies (nanowires, nanotubes, spheres) allowing to select the best sensitivity and selectivity for the sensor. Bacterial flagellar filaments (special protein molecules) will be investigated and engineered as sensitive biolayer for heavy metal detection.
The goals of the project are to develop an integrated materials – technology – product – system concept, demonstrator and prototype for eliminating or minimising the use of chemical batteries, other energy sources, or complex wiring in microsensors/microsystems, increasing the autonomy of sensors, systems and networks, to provide affordable energy technologies with low CO2 emissions and to deliver a portable, autonomous apparatus for water monitoring (detection of nitrates/ nitrides, heavy metals).

Mi a kutatás alapkérdése?
Ebben a részben írja le röviden, hogy mi a kutatás segítségével megválaszolni kívánt probléma, mi a kutatás kiinduló hipotézise, milyen kérdéseket válaszolnak meg a kísérletek.

The main goal of the project is to design and prototype a sustainable autonomous system for nitrates/nitrites and heavy metals monitoring of natural water sources.
Technical objectives: a) Micro (photo)electrochemical sensor design, fabrication and testing; b) Design and fabrication of high efficiency ultra-thin solar cells; c) Power harvesting and storage device integration; d) New materials development for sensors and solar cells (nanowires and nanotubes TiO2, ZnO, TiO2- SnO2, SnO2, CuxS, CZTS, sensing protein molecules, flagellar filaments with large sensing area); e) Investigation with high sensitivity optical method (Grating Coupled Interferometry, GCI), not used before for these purpose, of the deposition of these layers, molecules and their ability to bond the materials to be sensed; f) Optimization of deposition techniques (sol-gel, hydrothermal synthesis, magnetron sputtering, spray pyrolysis, screen printing) and characterization for integration of materials with sensors and solar cells active areas; g) Technology demonstration; h) System (apparatus) prototyping.

Mi a kutatás jelentősége?
Röviden írja le, milyen új perspektívát nyitnak az alapkutatásban az elért eredmények, milyen társadalmi hasznosíthatóságnak teremtik meg a tudományos alapját. Mutassa be, hogy a megpályázott kutatási területen lévő hazai és a nemzetközi versenytársaihoz képest melyek az egyediségei és erősségei a pályázatának!

- Low cost sensors for fast detection of nitrites/ nitrates and heavy metal
The sensing unit will be developed following the same concept of avoiding critical materials or using them at traces level (dopants) and for specific components.
Platinum and doped tin oxide, both deposited with a polymeric membrane will be used as a sensing element (nitrates/nitrites, heavy metals). In, F and Sb will be tested as dopants for the SnO2 layer. Conducting polymers (PANI, PVC and other polymers) will be used as the membrane sensing layer. The auxiliary electrode, reference electrode and working electrode will be integrated on the same silicon chip. The new disposable biosensor for heavy metals detection will use sensing protein molecules, flagellar filaments with large sensing area.
- Enhancement of the material properties by new preparation methods using doping and different morphologies controlled through chemical methods. The use of more synthesis techniques will allow to select the optimum building-blocks, in terms of output (efficiency) and cost-effectiveness.
- High efficiency solar energy harvester
Optimizing the semiconducting layers required for solar cell manufacturing, especially by rigorous control of doping level will be a valid argument for increasing of conversion efficiency. The main threshold properties will be: (a) Interface compatibility of the single-materials in the multi-materials (2D and 3D nano-composites); (b) thermodynamic compatibility (band gaps alignment). The main considerations are applied for (photo)electrochemical sensors.
- Energy autonomous monitoring system (Prototype) - portable, low cost, easy handling, immediate detection

A kutatás összefoglalója, célkitűzései laikusok számára
Ebben a fejezetben írja le a kutatás fő célkitűzéseit alapműveltséggel rendelkező laikusok számára. Ez az összefoglaló a döntéshozók, a média, illetve az érdeklődők tájékoztatása szempontjából különösen fontos az NKFI Hivatal számára.

- Low cost sensors for fast detection of nitrites/ nitrates and heavy metal
The sensing unit will be developed following the same concept of avoiding critical materials or using them at traces level (dopants) and for specific components.
Platinum and doped tin oxide, both deposited with a polymeric membrane will be used as a sensing element (nitrates/nitrites, heavy metals). In, F and Sb will be tested as dopants for the SnO2 layer. Conducting polymers (PANI, PVC and other polymers) will be used as the membrane sensing layer. The auxiliary electrode, reference electrode and working electrode will be integrated on the same silicon chip. The new disposable biosensor for heavy metals detection will use sensing protein molecules, flagellar filaments with large sensing area.
- Enhancement of the material properties by new preparation methods using doping and different morphologies controlled through chemical methods. The use of more synthesis techniques will allow to select the optimum building-blocks, in terms of output (efficiency) and cost-effectiveness.
- High efficiency solar energy harvester
Optimizing the semiconducting layers required for solar cell manufacturing, especially by rigorous control of doping level will be a valid argument for increasing of conversion efficiency. The main threshold properties will be: (a) Interface compatibility of the single-materials in the multi-materials (2D and 3D nano-composites); (b) thermodynamic compatibility (band gaps alignment). The main considerations are applied for (photo)electrochemical sensors.
- Energy autonomous monitoring system (Prototype) - portable, low cost, easy handling, immediate detection
Summary
Summary of the research and its aims for experts
Describe the major aims of the research for experts.

The target is a new energy autonomous system based on micro (photo)electrochemical sensors, for concentration measurement of different ionic species in natural water sources.
It focuses on 3 directions: 1) new materials with high efficiency in solar energy harvesting and fabrication of small ultra-thin solar cells together; 2) new microsensors and materials for detection of nitrites/ nitrates and heavy metals in water; 3) low cost autonomous energy system integration and fabrication.
The microsensors for nitrates/nitrites and heavy metals will be of (photo)electrochemical type. A biosensor based on sensing protein molecules, flagellar filaments with specificity to heavy metals will be integrated.
The studied materials will be SnO2, TiO2 and ZnO. The thin films will be prepared by a broad variety of deposition techniques (sol-gel, spray pyrolysis, magnetron sputtering, hydrothermal synthesis) and will have different morphologies (nanowires, nanotubes, spheres) allowing to select the best sensitivity and selectivity for the sensor. Bacterial flagellar filaments (special protein molecules) will be investigated and engineered as sensitive biolayer for heavy metal detection.
The goals of the project are to develop an integrated materials – technology – product – system concept, demonstrator and prototype for eliminating or minimising the use of chemical batteries, other energy sources, or complex wiring in microsensors/microsystems, increasing the autonomy of sensors, systems and networks, to provide affordable energy technologies with low CO2 emissions and to deliver a portable, autonomous apparatus for water monitoring (detection of nitrates/ nitrides, heavy metals).

What is the major research question?
Describe here briefly the problem to be solved by the research, the starting hypothesis, and the questions addressed by the experiments.

The main goal of the project is to design and prototype a sustainable autonomous system for nitrates/nitrites and heavy metals monitoring of natural water sources.
Technical objectives: a) Micro (photo)electrochemical sensor design, fabrication and testing; b) Design and fabrication of high efficiency ultra-thin solar cells; c) Power harvesting and storage device integration; d) New materials development for sensors and solar cells (nanowires and nanotubes TiO2, ZnO, TiO2- SnO2, SnO2, CuxS, CZTS, sensing protein molecules, flagellar filaments with large sensing area); e) Investigation with high sensitivity optical method (Grating Coupled Interferometry, GCI), not used before for these purpose, of the deposition of these layers, molecules and their ability to bond the materials to be sensed; f) Optimization of deposition techniques (sol-gel, hydrothermal synthesis, magnetron sputtering, spray pyrolysis, screen printing) and characterization for integration of materials with sensors and solar cells active areas; g) Technology demonstration; h) System (apparatus) prototyping.

What is the significance of the research?
Describe the new perspectives opened by the results achieved, including the scientific basics of potential societal applications. Please describe the unique strengths of your proposal in comparison to your domestic and international competitors in the given field.

- Low cost sensors for fast detection of nitrites/ nitrates and heavy metal
The sensing unit will be developed following the same concept of avoiding critical materials or using them at traces level (dopants) and for specific components.
Platinum and doped tin oxide, both deposited with a polymeric membrane will be used as a sensing element (nitrates/nitrites, heavy metals). In, F and Sb will be tested as dopants for the SnO2 layer. Conducting polymers (PANI, PVC and other polymers) will be used as the membrane sensing layer. The auxiliary electrode, reference electrode and working electrode will be integrated on the same silicon chip. The new disposable biosensor for heavy metals detection will use sensing protein molecules, flagellar filaments with large sensing area.
- Enhancement of the material properties by new preparation methods using doping and different morphologies controlled through chemical methods. The use of more synthesis techniques will allow to select the optimum building-blocks, in terms of output (efficiency) and cost-effectiveness.
- High efficiency solar energy harvester
Optimizing the semiconducting layers required for solar cell manufacturing, especially by rigorous control of doping level will be a valid argument for increasing of conversion efficiency. The main threshold properties will be: (a) Interface compatibility of the single-materials in the multi-materials (2D and 3D nano-composites); (b) thermodynamic compatibility (band gaps alignment). The main considerations are applied for (photo)electrochemical sensors.
- Energy autonomous monitoring system (Prototype) - portable, low cost, easy handling, immediate detection

Summary and aims of the research for the public
Describe here the major aims of the research for an audience with average background information. This summary is especially important for NRDI Office in order to inform decision-makers, media, and others.

- Low cost sensors for fast detection of nitrites/ nitrates and heavy metal
The sensing unit will be developed following the same concept of avoiding critical materials or using them at traces level (dopants) and for specific components.
Platinum and doped tin oxide, both deposited with a polymeric membrane will be used as a sensing element (nitrates/nitrites, heavy metals). In, F and Sb will be tested as dopants for the SnO2 layer. Conducting polymers (PANI, PVC and other polymers) will be used as the membrane sensing layer. The auxiliary electrode, reference electrode and working electrode will be integrated on the same silicon chip. The new disposable biosensor for heavy metals detection will use sensing protein molecules, flagellar filaments with large sensing area.
- Enhancement of the material properties by new preparation methods using doping and different morphologies controlled through chemical methods. The use of more synthesis techniques will allow to select the optimum building-blocks, in terms of output (efficiency) and cost-effectiveness.
- High efficiency solar energy harvester
Optimizing the semiconducting layers required for solar cell manufacturing, especially by rigorous control of doping level will be a valid argument for increasing of conversion efficiency. The main threshold properties will be: (a) Interface compatibility of the single-materials in the multi-materials (2D and 3D nano-composites); (b) thermodynamic compatibility (band gaps alignment). The main considerations are applied for (photo)electrochemical sensors.
- Energy autonomous monitoring system (Prototype) - portable, low cost, easy handling, immediate detection





 

Final report

 
Results in Hungarian
Kifejlesztettünk új, erősen Ni- és As-kötési képességű fehérjéket . Kifejlesztettünk javitott fehérje termelési protokollokat, és funkcionalizált speciális érzékelőket. Sok kísérletet végeztünk kovalensen rögzített fehérje rétegekkel arany felületen, és megvizsgáltuk ezeket a fém-ion-kötési tulajdonságokat optikai (spektroszkópikus Ellipszometriával) és elektrokémiai (ciklikus voltametria ) módszerekkel. Az előállitott érzékelőket szállítani lehet normál postai úton is a partnereknek, és eltárolhatóak a hűtőszekrényben több mint 6 hónapig a végső használatig. Ígéretes elektrokémiai méréseket végeztünk ezeken az új típusú érzékelő csipekkal. A mérések bebizonyították, hogy a fehérjealapú érzékelő rétegek stabilitása elég jó, és az érzékelő chipek újra felhasználhatók kémiai tisztítás után is akár 2-3 hónappal. Ez a vizsgálat bizonyítja, hogy az előkészített chipek több hónap után és többször is felhasználhatóak. További információk: http://www.icf.ro/pr_2016/WaterSafe/Obtained_results.html
Results in English
We developed new proteins with strong Ni- and As-binding capability. The protein production protocols were improved, and functionalized special sensors were developed. We performed several experiments to fabricate covalently immobilized protein filament layer on gold surface and investigated the developed metal-ion-bonding (Ni, As) proteins by optical (Spectroscopic Ellipsometry) and electrochemical (Cyclic Voltammetry) methods The produced sensors can be delivered by normal mail to partners and stored in fridge for more than 6 months for final using. Promising electrochemical measurements were performed with these new types of sensor-chips. The measurements proved that the stability of proteinous sensing layer is good enough and the sensor chips can be re-used even after 2-3 month and chemical cleaning. This later investigation series prove that the prepared chips can be used after several months and more than once. More results: http://www.icf.ro/pr_2016/WaterSafe/Obtained_results.html
Full text https://www.otka-palyazat.hu/download.php?type=zarobeszamolo&projektid=117847
Decision
Yes





 

List of publications

 
Judit Nador, Benjamin Kalas, Andras Saftics, Emil Agocs, Peter Kozma, Laszlo Korosi, Inna Szekacs, Miklos Fried, Robert Horvath, Peter Petrik: Plasmon-enhanced two-channel in situ Kretschmann ellipsometry of protein adsorption, cellular adhesion and polyelectrolyte deposition on titania nanostructures, OPTICS EXPRESS 24:(5) pp. 4812-4823. (2016), 2016
Agocs Emil, Kozma Peter, Nador Judit, Hamori Andras, Janosov Milan, Kalas Benjamin, Kurunczi Sandor, Fodor Balint, Ehrentreich-Förster Eva, Fried Miklos, Horvath Robert, Petrik Peter: Grating coupled optical waveguide interferometry combined with in situ spectroscopic ellipsometry to monitor surface processes in aqueous solutions, APPLIED SURFACE SCIENCE in press: p. in press. 6 p. (2016), 2016
Fodor B, Kozma P, Burger S, Fried M, Petrik P: Effective medium approximation of ellipsometric response from random surface roughness simulated by finite-element method, THIN SOLID FILMS in press: p. in press. 5 p. (2016), 2016
Farkas E, Patko D, Khanh NQ, Toth E, Vonderviszt F, Horvath R: Self-assembly and structure of flagellin-polyelectrolyte composite layers: Polyelectrolyte induced flagellar filament formation during the alternating deposition process, RSC ADVANCES 6: (95) pp. 92159-92167, 2016
Éva Bereczk-Tompa, Mihály Pósfai, Balázs Tóth, Ferenc Vonderviszt: Magnetite-binding flagellar filaments displaying the MamI loop motif, CHEMBIOCHEM 17:2075-2082 (2016) (ISBN 1439-7633), 2016
Hajnalka Jankovics, Éva Tóth, Ágnes Klein, Anett Sebestyén, Balázs Tóth, Ferenc Vonderviszt: ENGINEERING HEAVY METAL BINDING FLAGELLIN-BASED NANOSTRUCTURES FOR SENSOR ELEMENTS MONITORING NATURAL WATERS, 13th European Biological Inorganic Chemistry Conference (EuroBIC 13). Budapest, 2016.08.26-2016.09.01. Budapest: Hungarian Chemical Society (MKE) p.110 ISBN:9789639970670, 2016
Kovács B, Patkó D, Klein Á, Kakasi B, Saftics A, Kurunczi S, Vonderviszt F, Horváth R: Bacteria repellent layer made of flagellin, Sensors Actuators B Chem. v. 257, pp. 839–845, 2018
Bereczk-Tompa É, Vonderviszt F, Horváth B, Szalai I, Pósfai M: Biotemplated synthesis of magnetic filaments, Nanoscale v. 9, pp. 15062-15069, 2017
Nador J., Saftics A., Kalas B., Illes L., Kovacs B., Moldovan C., Romanenko A., Gartner M., Fried M., Vonderviszt F., Petrik P.: Fabrication of genetically modified bacterial filament coatings to develop sensor surfaces for detecting water pollution, 5th Conference on Sustainable Energy Brasov, 19-21. October 2017, 2017
Andras Saftics, Judit Nádor, Benjámin Kalas, Barbara Türk, Ferenc Vonderviszt, Sándor Kurunczi, Robert Horvath, Péter Petrik, Miklós Fired: Ellipsometric characterization of carbohydrate and protein layers for biosensor applications, 5th Conference on Sustainable Energy Brasov, 19-21. October 2017, 2017
Hajnalka Jankovics; É. Tóth; Á. Klein; A. Sebestyén; B. Tóth; Ferenc Vonderviszt: Engineering Heavy Metal Binding Flagellin-Based Nanotubes for Sensing Layers, 5th Conference on Sustainable Energy Brasov, 19-21. October 2017, 2017
Judit Nador, Andras Saftics, Benjamin Kalas, Levente Illes, Carmen Moldovan, Mariuca Gartner, Boglarka Kovacs, Sandor Kurunczi, Miklos Fried, Éva Tóth, Ferenc Vonderviszt, Peter Petrik: Sensor surface preparation using genetically modified bacterial filaments, E-MRS 2017 Fall Meeting in Warsaw (Poland), September 18-21, 2017, Symposium S: Materials- nanoelectronics & -nanophotonics, 2017
Benjamin Kalas , Judit Nádor, Miklós Fried, Péter Petrik: Protein adsorption on different nanostructures monitored by Kretschmann ellipsometry, E-MRS 2017 Fall Meeting in Warsaw (Poland), September 18-21, 2017, Symposium S: Materials- nanoelectronics & -nanophotonics, 2017
Kovács Boglárka: CHARACTERIZING OF FLAGELLIN BASED BIOMIMETIC COATINGS AND MONITORING CELL ADHESION WITH LABEL-FREE OPTICAL BIOSENSORS - Flagellin alapú biomimetikus felületek jellemzése, PhD theses, Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola, 2017
M. Gartner, C. Lete, M. Chelu, H. Stroescu, M. Zaharescu, C. Moldovan, M. Gheorghe, S. Gheorghe, A. Duta, Z. Labadi, B. Kalas, A. Saftics, M. Fried, P. Petrik,E. Tóth, H. Jankovics, F. Vonderviszt: Electrochemical sensors for detection of different ionic species (nitrites/nitrates and heavy metals) in natural water sources, submitted to IEEE CAS 2018 (Paper ID = 5032) (2018), 2018
A. Saftics, B. Kalas, J. Nador, A. Romanenko, É. Tóth, Z. Labadi, M. Gheorghe, L. Illes, B. Kovacs, C. Moldovan, M. Gartner, F. Vonderviszt, M. Fried, P. Petrik: COATINGS FOR ELECTRONIC WATER POLLUTION SENSORS, INTERNATIONAL SEMICONDUCTOR CONFERENCE, CAS 2018, October 10-12, 2018, Sinaia, ROMANIA, 2018
Á. Klein, M. Kovács, A. Muskotál, H. Jankovics, B. Tóth, M. Pósfai, F. Vonderviszt: Nanobody-displaying flagellar nanotubes, Scientific Reports 8:3584, 2018
Kovács B, Saftics A, Bíró A, Kurunczi S, Szalontai B, Kakasi B, Vonderviszt F, Dér A, Horváth R: Kinetics and Structure of Self-Assembled Flagellin Monolayers on Hydrophobic Surfaces in the Presence of Hofmeister Salts, J. Phys Chem. C 122, 21375-21386, 2018
Jankovics H, Kovács E, Tóth É, Kovács N, Vonderviszt F: Development and characterisation of a high affinity nickel(II)-binding flagellin variant, 14th European Biological Inorganic Chemistry Conference (EuroBic 2018) Birmingham, UK; August 26-30, 2018, 2018
A. Romanenko, B. Kalas, A. Nemeth, J. Nador, F. Vonderviszt, M. Fried, P. Petrik: Real Time Characterization of Filamental Nano-objects at Solid-liquid Interfaces – Numerical Reconstruction from SE Measurements, ICSE-8, 8. Int. Conf. on Spectroscopic Ellipsometry, 2019.05.26-31 Barcelona, Spain, poster, 2019
B. Kalas, A. Romanenko, A. Saftics, K. Ferencz, M. Fried, P. Petrik: Performance comparison of planar nanostructures for biosensing applications by Total Internal Reflection Ellipsometer, ICSE-8, 8. Int. Conf. on Spectroscopic Ellipsometry, 2019.05.26-31 Barcelona, Spain, poster, 2019
Jankovics H, Szekér P, Tóth É, Vonderviszt F: Flagellin alapú arzén- és nikkelkötő érzékelő rétegek létrehozása és kötőtulajdonságuk vizsgálata, Műszaki Kémiai Napok 2019, 2019. április 16-18, Veszprém, 2019
Siddiqui J, Jankovics H, Vonderviszt F: Protein library design for the directed evolution of specific binder flagellin variants, Műszaki Kémiai Napok 2019, 2019. április 16-18, Veszprém, 2019
Kakasi B, Gerecsei T, Kovács B, Horváth R, Jankovics H, Vonderviszt F: Flagellin-based monolayers with tuneable characteristics for cell adhesion studies, 6th Nano Today Conference, 16-20 June, 2019, Lisbon, Portugal, 2019





 

Events of the project

 
2018-02-15 16:48:24
Résztvevők változása
2017-03-30 09:13:44
Résztvevők változása




Back »